People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pires, Fma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023On the representativeness of polycrystalline models with transformation induced plasticitycitations
- 2022On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strainscitations
- 2022Consistent modeling of the coupling between crystallographic slip and martensitic phase transformation for mechanically induced loadingscitations
- 2021Homogenizing the Elastic Properties of Composite Material Using the NNRPIM
- 2020Torsional fretting wear experimental analysis of a R3 offshore steel against a PC/ABS blendcitations
- 2019The role of elastic anisotropy on the macroscopic constitutive response and yield onset of cubic oligo- and polycrystalscitations
- 2018Constitutive modelling of mechanically induced martensitic transformations Prediction of transformation surfacescitations
- 2016Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part I - Constitutive modelcitations
- 2016Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part II - Numerical analysis and validationcitations
- 2014Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulationcitations
- 2014AN ALGORITHM TO GENERATE MICRO MECHANICAL MODELS COMPOSED BY CIRCULAR INCLUSIONS
- 2013A framework for product architecture and technology selection in competitive environment
- 2011A MICROMECHANICAL CONSTITUTIVE MODEL FOR DUCTILE FRACTURE: NUMERICAL TREATMENT AND CALIBRATION STRATEGY
- 2009Numerical modelling of the filament winding process
Places of action
Organizations | Location | People |
---|
article
Constitutive modelling of mechanically induced martensitic transformations Prediction of transformation surfaces
Abstract
Purpose - The purpose of this work is to apply a recently proposed constitutive model for mechanically induced martensitic transformations to the prediction of transformation loci. Additionally, this study aims to elucidate if a stress-assisted criterion can account for transformations in the so-called strain-induced regime. Design/methodology/approach - The model is derived by generalising the stress-based criterion of Patel and Cohen (1953), relying on lattice information obtained using the Phenomenological Theory of Martensite Crystallography. Transformation multipliers (cf. plastic multipliers) are introduced, from which the martensite volume fraction evolution ensues. The associated transformation functions provide a variant selection mechanism. Austenite plasticity follows a classical single crystal formulation, to account for transformations in the strain-induced regime. The resulting model is incorporated into a fully implicit RVE-based computational homogenisation finite element code. Findings - Results show good agreement with experimental data for a meta-stable austenitic stainless steel. In particular, the transformation locus is well reproduced, even in a material with considerable slip plasticity at the martensite onset, corroborating the hypothesis that an energy-based criterion can account for transformations in both stress-assisted and strain-induced regimes. Originality/value - A recently developed constitutive model for mechanically induced martensitic transformations is further assessed and validated. Its formulation is fundamentally based on a physical metallurgical mechanism and derived in a thermodynamically consistent way, inheriting a consistent mechanical dissipation. This model draws on a reduced number of phenomenological elements and is a step towards the fully predictive modelling of materials that exhibit such phenomena.