Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hilario, Martin S.

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Electromagnetic-thermal model of a millimeter-wave heat exchanger based on an AlN:Mo susceptor12citations

Places of action

Chart of shared publication
Hoff, Brad W.
1 / 1 shared
Martin, Stephanie A.
1 / 1 shared
Kumi, Petra
1 / 2 shared
Rittersdorf, I. M.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hoff, Brad W.
  • Martin, Stephanie A.
  • Kumi, Petra
  • Rittersdorf, I. M.
OrganizationsLocationPeople

article

Electromagnetic-thermal model of a millimeter-wave heat exchanger based on an AlN:Mo susceptor

  • Hoff, Brad W.
  • Hilario, Martin S.
  • Martin, Stephanie A.
  • Kumi, Petra
  • Rittersdorf, I. M.
Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>The paper introduces and illustrates the use of numerical models for the simulation of electromagnetic and thermal processes in an absorbing ceramic layer (susceptor) of a new millimeter-wave (MMW) heat exchanger. The purpose of this study is to better understand interaction between the MMW field and the susceptor, choose the composition of the ceramic material and help design the physical prototype of the device.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>A simplified version of the heat exchanger comprises a rectangular block of an aluminum nitride (AlN) doped with molybdenum (Mo) that is backed by a thin metal plate and irradiated by a plane MMW. The coupled electromagnetic-thermal problem is solved by the finite-difference time-domain (FDTD) technique implemented in QuickWave. The FDTD model is verified by solving the related electromagnetic problem by the finite element simulator COMSOL Multiphysics. The computation of dissipated power and temperature is based on experimental data on temperature-dependent dielectric constant, loss factor, specific heat and thermal conductivity of the AlN:Mo composite. The non-uniformity of patterns of dissipated power and temperature is quantified via standard-deviation-based metrics.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>It is shown that with the power density of the plane wave on the block’s front face of 1.0 W/mm<jats:sup>2</jats:sup>, at 95 GHz, 10 × 10 × 10-mm blocks with Mo = 0.25 – 4% can be heated up to 1,000 °C for 60-100 <jats:italic>s</jats:italic> depending on Mo content. The uniformity of the temperature field is exceptionally high – in the course of the heating, temperature is evenly distributed through the entire volume and, in particular, on the back surface of the block. The composite producing the highest level of total dissipated power is found to have Mo concentration of approximately 3%.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Research limitations/implications</jats:title> <jats:p>In the electromagnetic model, the heating of the AlN:Mo samples is characterized by the volumetric patterns of density of dissipated power for the dielectric constant and the loss factor corresponding to different temperatures of the process. The coupled model is run as an iterative procedure in which electromagnetic and thermal material parameters are upgraded in every cell after each heating time step; the process is then represented by a series of thermal patterns showing time evolution of the temperature field.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Practical implications</jats:title> <jats:p>Determination of practical dimensions of the MMW heat exchanger and identification of material composition of the susceptor that make operations of the device energy efficient in the required temperature regime require and expensive experimentation. Measurement of heat distribution on the ceramic-metal interface is a practically challenging task. The reported model is meant to be a tool assisting in development of the concept and supporting system design of the new MMW heat exchanger.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>While exploitation of a finite element model (e.g. in COMSOL Multiphysics environment) of the scenario in question would require excessive computational resources, the reported FDTD model shows operational capabilities of solving the coupled problem in the temperature range from 20°C to 1,000°C within a few hours on a Windows 10 workstation. The model is open for further development to serve in the ongoing support of the system design aiming to ease the related experimental studies.</jats:p> </jats:sec>

Topics
  • density
  • impedance spectroscopy
  • surface
  • molybdenum
  • simulation
  • aluminium
  • dielectric constant
  • nitride
  • composite
  • size-exclusion chromatography
  • thermal conductivity
  • specific heat