Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tuna, Ahmet

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Investigation of the wear behavior of FeNi36 alloy cut by WEDM method under different loads3citations

Places of action

Chart of shared publication
Ceritbinmez, Ferhat
1 / 5 shared
Kanca, Yusuf
1 / 2 shared
Kanca, Erdoğan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ceritbinmez, Ferhat
  • Kanca, Yusuf
  • Kanca, Erdoğan
OrganizationsLocationPeople

article

Investigation of the wear behavior of FeNi36 alloy cut by WEDM method under different loads

  • Ceritbinmez, Ferhat
  • Kanca, Yusuf
  • Kanca, Erdoğan
  • Tuna, Ahmet
Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>FeNi36 (Invar-36) alloy is widely used in the fabrication of molding tools in aerospace industries but there remains a need to improve its wear and friction performance due to its relatively low hardness. The formation of a heat affected zone (HAZ) on the surface of Invar-36 cut by wire electric discharge machining (WEDM) is promising to enhance its tribological properties. This study aims to investigate the tribological performance of WEDM-treated Invar-36 via a ball-on-disk tribometer in dry-sliding conditions.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>The untreated and WEDM-treated Invar-36 surfaces were reciprocated against an alumina ball at a sliding velocity of 40 mm/s, a stroke length of 10 mm and a sliding duration of 125 min under loads of 5, 10 and 20 N. The worn surfaces were characterized using a 2D profilometry and a scanning electron microscope equipped with energy-dispersive spectroscopy.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The results showed that the WEDM-treated surface had a superior friction coefficient and wear resistance in comparison to the untreated surface, due to the grown HAZ. There was found to be a 9.3%–11.4% decrease in the friction coefficient and a 47%–57% reduction in the wear volume after the WEDM treatment. Both the untreated and WEDM-treated Invar-36 surfaces found abrasion and plastic deformation as the dominant wear mechanisms.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>Previous works have not focused on the tribological performance of the WEDM-treated Invar-36 extensively used for molding tools in aerospace industries. Our findings provide compelling evidence that the WEDM treatment improved the wear and friction performance of Invar-36 alloy because of the grown HAZ.</jats:p> </jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • wear resistance
  • hardness
  • size-exclusion chromatography
  • wire
  • profilometry