People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lekatou, Angeliki G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Corrosion and Tensile Behavior of 304L Rebars under the Influence of a Concrete Additive and Migrating Corrosion Inhibitors
- 2023Simulating porcelain firing effect on the structure, corrosion and mechanical properties of Co–Cr–Mo dental alloy fabricated by soft millingcitations
- 2023Microstructure-Properties Characterization of Selective Laser Melted Biomedical Co-28Cr-6Mo Alloycitations
- 2022A Critical Review on Al-Co Alloys: Fabrication Routes, Microstructural Evolution and Propertiescitations
- 2022Electrochemical Behavior of Nickel Aluminide Coatings Produced by CAFSY Method in Aqueous NaCl Solutioncitations
- 2021Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturingcitations
- 2021Structural and Tribological Assessment of Biomedical 316 Stainless Steel Subjected to Pulsed-Plasma Surface Modification: Comparison of LPBF 3D Printing and Conventional Fabricationcitations
- 2020Electrochemical Behavior of Al–Al9Co2 Alloys in Sulfuric Acidcitations
- 2018Microstructure and surface degradation of Al reinforced by Al<sub>x</sub>W intermetallic compounds via different fabrication routescitations
- 2018Solid particle erosion response of aluminum reinforced with tungsten carbide nanoparticles and aluminide particlescitations
- 2018Accelerated corrosion performance of AISI 316L stainless steel concrete reinforcement used in restoration works of ancient monumentscitations
- 2017Effect of Wetting Agent and Carbide Volume Fraction on the Wear Response of Aluminum Matrix Composites Reinforced by WC Nanoparticles and Aluminide Particlescitations
- 2015Microstructure And Mechanical Properties Of Al-WC Compositescitations
- 2013Corrosion and environmental degradation of bonded composite repaircitations
- 2013Solidification observations and sliding wear behavior of cast TiC particulate-reinforced AlMgSi matrix compositescitations
- 2008Influence of Montmorillonite Clay on Structure and Properties of Sodium Borate Glasses
Places of action
Organizations | Location | People |
---|
article
Corrosion and environmental degradation of bonded composite repair
Abstract
<jats:sec><jats:title content-type="abstract-heading">Purpose</jats:title><jats:p>Bonded composite patches are ideal for aircraft structural repair as they offer enhanced specific properties, case‐tailored performance and excellent corrosion resistance. Bonding minimizes induced stress concentrations unlike mechanical fastening, whilst it seals the interface between the substrate and the patch and reduces the risk of fretting fatigue that could occur in the contact zone. The purpose of this paper is to assess the electrochemical corrosion performance and the environmentally induced mechanical degradation of aerospace epoxy adhesives when carbon nanotubes (CNTs) are used as an additive to the neat epoxy adhesive.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Design/methodology/approach</jats:title><jats:p>The galvanic effect between aluminium substrates and either plain or CNT enhanced carbon fibre composites, was measured using a standard galvanic cell. Also, rest potential measurements and cyclic polarizations were carried out for each of the studied systems. The effect of the CNT introduction to a carbon fiber reinforced plastic (CFRP) on the adhesion efficiency, before and after salt‐spraying for 10, 20 and 30 days, was studied. The adhesion efficiency was evaluated by the single lap joint test.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Findings</jats:title><jats:p>The corrosion behaviour of the system is polymer matrix type dependent. CNT introduction to a CFRP may induce small scale localized degradation.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Originality/value</jats:title><jats:p>This paper fulfills an identified need to study how the shear strength and the response to galvanic corrosion are affected by epoxy resins modified by carbon nanotubes.</jats:p></jats:sec>