Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahamed, H.

  • Google
  • 1
  • 1
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Prediction of flow stress during hot deformation of MA'ed hybrid aluminium nanocomposite employing artificial neural network and Arrhenius constitutive model5citations

Places of action

Chart of shared publication
Senthilkumar, V.
1 / 10 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Senthilkumar, V.
OrganizationsLocationPeople

article

Prediction of flow stress during hot deformation of MA'ed hybrid aluminium nanocomposite employing artificial neural network and Arrhenius constitutive model

  • Senthilkumar, V.
  • Ahamed, H.
Abstract

<jats:sec><jats:title content-type="abstract-heading">Purpose</jats:title><jats:p>The aim of this paper is to develop a suitable artificial neural network (ANN) model that fits best in predicting the experimental flow stress values to the closet proximity for mechanically alloyed Al6063/0.75Al2O3/0.75Y2O3 hybrid nanocomposite.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Design/methodology/approach</jats:title><jats:p>The ANN model is implemented on neural network toolbox of MATLAB<jats:sup>®</jats:sup> using feed‐forward back propagation network and logsig functions. A set of 80 training data and 20 testing data were used in the ANN model. The layout of the network is arranged with three input parameters that include temperature, strain and strain rate, one hidden layer with 22 neurons and one output parameter consisting of flow stress. Flow stress was also predicted using Arrhenius constitutive model.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Findings</jats:title><jats:p>Based on the comparison of the predicted results using ANN model and Arrhenius constitutive model, it was observed that the ANN model has higher accuracy and could be used to estimate the flow stress values during hot deformation of Al6063/0.75Al2O3/0.75Y2O3 hybrid nanocomposite.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-heading">Originality/value</jats:title><jats:p>The ANN trained with feed forward back propagation algorithm developed, presents the excellent performance of flow stress prediction of Al6063/0.75Al2O3/0.75Y2O3 hybrid nanocomposite with minimum error rates.</jats:p></jats:sec>

Topics
  • nanocomposite
  • impedance spectroscopy
  • aluminium
  • size-exclusion chromatography