People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sercombe, Tim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023On the importance of nano-oxide control in laser powder bed fusion manufactured Ni-based alloys to enhance fracture propertiescitations
- 2023Dynamic constitutive behavior of LPBFed metal alloyscitations
- 2022Bioactivity and biodegradability of high temperature sintered 58S ceramicscitations
- 2022High strain-rate response of additively manufactured light metal alloyscitations
- 2020The effect of drying method on the surface structure of mesoporous sol-gel derived bioactive glass-ceramiccitations
- 2018Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprintingcitations
- 2017On the Breakdown of SiC during the Selective Laser Melting of Aluminum Matrix Compositescitations
- 2016A 3D printed superconducting aluminium microwave cavitycitations
- 2016Selective laser melting of Zr-based bulk metallic glassescitations
- 2016Selective laser melting of Al-12Si alloy: Enhanced densification via powder dryingcitations
- 2011Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloycitations
- 2008Heat treatment of Ti-6Al-7Nb components produced by selective laser meltingcitations
- 2008Process repeatability and sources of error in indirect SLS of aluminiumcitations
- 2007The Effect of Particle Shape on the Sintering of Aluminumcitations
- 2006Process shrinkage and accuracy during indirect laser sintering of aluminiumcitations
- 2005Sintering of maraging steel with phosphorous additionscitations
- 2004On the role of magnesium and nitrogen in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2004On the role of tin in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2003Sintering of freeformed maraging steel with boron additionscitations
- 2003The effect of resin type on the sintering of freeformed maraging steelcitations
- 2003On the sintering of uncompacted, pre-alloyed Al powder alloyscitations
- 2003Rapid manufacturing of aluminum componentscitations
- 2001Liquid phase sintering of aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Process repeatability and sources of error in indirect SLS of aluminium
Abstract
Purpose - The purpose of this paper is to investigate the accuracy and repeatability of the indirect selective laser sintering of aluminium process. Design/methodology/approach - This work characterised the shrinkage of indirect SLS aluminium parts during the various stages of production. Standard scale parts were measured using a Giddings and Lewis co-ordinate measuring machine in both the green and infiltrated condition. Findings - The experiments conducted show that most accuracy is lost during the furnace cycle and that the greatest loss of accuracy occurred in the Z dimension. Additionally the position of parts within the part bed in both X, Y and Z is shown to influence accuracy, with smaller parts being built closer to the edge of the bed later in the build. These results have been interpreted as being a result of the phenomenon of "Z-growth". Finally, the research shows that the overall accuracy of the indirect selective laser sintering of aluminium process is comparable with many existing processes such as investment casting. Originality/value - Before any new material can be accepted, there is a need to not only fully characterise the dimensional accuracy attainable, but also to gain a thorough understanding of the processes that contribute to the inaccuracies. This paper addresses this need.