People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Słoma, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Electromagnetic field controlled domain wall displacement for induced strain tailoring in BaTiO3-epoxy nanocompositecitations
- 2021Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substratescitations
- 2021Carbon nanotube-based composite filaments for 3d printing of structural and conductive elementscitations
- 2020Conductive ABS/Ni Composite Filaments for Fused Deposition Modeling of Structural Electronicscitations
- 2020Flexible Gas Sensor Printed on a Polymer Substrate for Sub-ppm Acetone Detectioncitations
- 2019Mechanical and thermal properties of ABS/iron composite for fused deposition modelingcitations
- 2019Photonic curing of silver paths on 3D printed polymer substratecitations
- 2019Heterophase materials for fused filament fabrication of structural electronicscitations
- 2018Electrically conductive acrylonitrile butadiene styrene(ABS)/copper composite filament for fused deposition modelingcitations
- 2018Characterization of PMMA/BaTiO3 Composite Layers Through Printed Capacitor Structures for Microwave Frequency Applicationscitations
- 2016Microwave properties of sphere-, flake-, and disc-shaped BaFe<inf>12</inf>O<inf>19</inf> nanoparticle inks for high-frequency applications on printed electronicscitations
- 2016Rheology of inks for various techniques of printed electronicscitations
- 2015Perovskite-type KTaO 3–reduced graphene oxide hybrid with improved visible light photocatalytic activitycitations
- 2015Influence of electric field on separation and orientation of carbon nanotubes in spray coated layerscitations
- 2015Simple optical method for recognizing physical parameters of graphene nanoplatelets materials
- 2014Thick Film Polymer Composites with Graphene Nanoplatelets for Use in Printed Electronics citations
- 2014Optical measurements of selected properties of nanocomposite layers with graphene and carbon nanotubes fillerscitations
- 2013Miniaturized coupled-line directional coupler designed with the use of photoimageable Thick-Film technology
- 2012Screen printed polymer pastes with carbon nanotubes for printed electronics applications
- 2012SAC 305 solder paste with carbon nanotubes - Part I: Investigation of the influence of the carbon nanotubes on the SAC solder paste propertiescitations
- 2010Investigation of properties of the SAC solder paste with the silver nanoparticle and carbon nanotube additives and the nano solder jointscitations
Places of action
Organizations | Location | People |
---|
article
SAC 305 solder paste with carbon nanotubes - Part I: Investigation of the influence of the carbon nanotubes on the SAC solder paste properties
Abstract
<p>Purpose - The purpose of this paper is to study the manufacturing of SAC 305 solder paste with multiwall carbon nanotubes (MWCNT) before and after structure modification and also to investigate the added carbon nanotubes' influence on the technological properties and the microstructure of "nano" solder pastes. This work is a continuation of similar previous studies of SAC solder pastes with silver nanopowder additions. Design/methodology/approach - The authors applied functionalization and esterification methods for the structural modification of the carbon nanotubes. The "nano" solder paste preparation was performed with the use of a two-stage method of carbon nanotube dispersion in "own-manufactured" SAC 305 solder paste. To determine the technological properties of the "nano" solder paste, slump, solder ball, wetting and spreading tests were applied according to the existing standards. Standard metallographic procedures were applied for microstructural analysis. Findings - As expected on the basis of the previous studies of SAC solder pastes with silver nanopowders, positive results were obtained for the own-manufactured SAC 305 solder paste with carbon nanotubes by applying the dispersion method. Also applied were functionalization and esterification methods, whose results showed microstructural changes in the carbon nanotubes. The "nano" SAC solder pastes showed a positive influence on the slump properties, compared to the basic SAC solder paste. The authors proved a negative influence of the carbon nanotubes' addition (dependent on their concentration) on the spreading and wetting of the SAC solder paste on a copper substrate, which provoked the non-wetting and dewetting phenomena. A slight improvement was observed for the "nano" SAC solder pastes with modified carbon nanotubes. The carbon nanotubes' presence in the solder paste showed a positive effect on the growth reduction of the IMCs' thickness, which depended on the type. Research limitations/implications - The authors intend to verify the reinforcement effect of the alloys with carbon nanotubes suggested in the literature (the aim of Part II). For this purpose, an assembly process with RC electronic elements on PCBs with Ni/Au and SAC (HASL) finishes will be performed, with the use of the SAC 305 solder paste with modified carbon nanotubes, for the purpose of reflow soldering. Next, measurements of the mechanical strength of the solder joints and their microstructures will be conducted. Practical implications - It is suggested that further studies of the mechanical properties and the reliability of solder joints are necessary for the practical implementation of the "nano" SAC solder pastes, but taking into account the wetting data, the investigation should be performed only for "nano" pastes with the lowest additions of modified carbon nanotubes. Originality/value - The paper demonstrates a method of "nano" solder paste preparation by means of a two-stage dispersion of carbon nanotubes in the own-manufactured SAC 305 solder paste and a comparison study of the properties of "nano" pastes with the basic SAC solder paste. © Emerald Group Publishing Limited.</p>