Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Calero, Guillermo

  • Google
  • 3
  • 59
  • 282

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017MicroED Structure of Au<sub>146</sub>(p-MBA)<sub>57</sub> at Subatomic Resolution Reveals a Twinned FCC Cluster.105citations
  • 2017MicroED Structure of Au 146 (p-MBA) 57 at Subatomic Resolution Reveals a Twinned FCC Cluster105citations
  • 2016High-density grids for efficient data collection from multiple crystals.72citations

Places of action

Chart of shared publication
Lukes, Dylan
2 / 2 shared
Weissker, Hans-Christian
2 / 3 shared
Mw, Martynowycz
1 / 1 shared
Mj, Yacaman
1 / 1 shared
López-Lozano, Xóchitl
2 / 3 shared
Santiago, U.
1 / 1 shared
Sc, Weiss
1 / 1 shared
Rl, Whetten
1 / 2 shared
Mm, Alvarez
1 / 1 shared
Black, David
2 / 3 shared
Gonen, T.
1 / 1 shared
De La Cruz, Michael Jason
1 / 1 shared
Co, Barnes
1 / 1 shared
Vergara, S.
1 / 1 shared
Lin, G.
1 / 2 shared
Plascencia-Villa, Germán
1 / 3 shared
Barnes, Christopher
1 / 1 shared
Alvarez, Marcos
1 / 1 shared
Martynowycz, Michael
1 / 1 shared
Santiago, Ulises
1 / 2 shared
Whetten, Robert
1 / 1 shared
De La Cruz, M. Jason
1 / 1 shared
Vergara, Sandra
1 / 1 shared
Gonen, Tamir
1 / 1 shared
Yacaman, Miguel Jose
1 / 3 shared
Lin, Guowu
1 / 1 shared
Weiss, Simon
1 / 1 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Lukes, Dylan
  • Weissker, Hans-Christian
  • Mw, Martynowycz
  • Mj, Yacaman
  • López-Lozano, Xóchitl
  • Santiago, U.
  • Sc, Weiss
  • Rl, Whetten
  • Mm, Alvarez
  • Black, David
  • Gonen, T.
  • De La Cruz, Michael Jason
  • Co, Barnes
  • Vergara, S.
  • Lin, G.
  • Plascencia-Villa, Germán
  • Barnes, Christopher
  • Alvarez, Marcos
  • Martynowycz, Michael
  • Santiago, Ulises
  • Whetten, Robert
  • De La Cruz, M. Jason
  • Vergara, Sandra
  • Gonen, Tamir
  • Yacaman, Miguel Jose
  • Lin, Guowu
  • Weiss, Simon
OrganizationsLocationPeople

article

High-density grids for efficient data collection from multiple crystals.

  • Kern, Jan
  • Baxter, Elizabeth L.
  • Brunger, Axel T.
  • Ibrahim, Mohamed
  • Manglik, Aashish
  • Bonagura, Christopher A.
  • Tsai, Yingssu
  • Larsson, Karl M.
  • Woldeyes, Rahel A.
  • Lyubimov, Artem Y.
  • Pang, Siew S.
  • Song, Jinhu
  • Kobilka, Brian K.
  • Yachandra, Vittal
  • Mcphillips, Scott E.
  • Degrado, William F.
  • Cohen, Aina E.
  • Yano, Junko
  • Aguila, Laura
  • Zouni, Athina
  • Calero, Guillermo
  • Caradoc-Davies, Tom T.
  • Barnes, Christopher O.
  • Brehmer, Winnie
  • Kruse, Andrew C.
  • Chatterjee, Ruchira
  • Weis, William I.
  • Lemke, Heinrik T.
  • Fraser, James S.
  • Soltis, S. M.
  • Thomaston, Jessica
  • Norgren, Erik
  • Alonso-Mori, Roberto
Abstract

Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.

Topics
  • density
  • polymer
  • phase
  • experiment
  • crystallization