Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Míšek, Martin

  • Google
  • 2
  • 6
  • 25

Czech Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Anomalous elasticity and damping in covalently cross-linked graphene aerogels25citations
  • 2014Pressure tunablity in ReX4based SMMs; A magnetostructural studycitations

Places of action

Chart of shared publication
Zafar, Zahid Ali
1 / 1 shared
Šilhavík, Martin
1 / 1 shared
Čičala, Martin
1 / 1 shared
Cervenka, Jiri
1 / 2 shared
Kumar, Prabhat
1 / 5 shared
Piliarik, Marek
1 / 1 shared
Chart of publication period
2022
2014

Co-Authors (by relevance)

  • Zafar, Zahid Ali
  • Šilhavík, Martin
  • Čičala, Martin
  • Cervenka, Jiri
  • Kumar, Prabhat
  • Piliarik, Marek
OrganizationsLocationPeople

article

Pressure tunablity in ReX4based SMMs; A magnetostructural study

  • Míšek, Martin
Abstract

<jats:p>Since the discovery of Single-Molecule Magnets (SMMs) in 1993 there has been extensive interest in understanding, developing and tuning the nature of magnetic interactions within SMMs with the intention of gaining greater insight into the nature of these interactions.[1] Typically this is done synthetically using variations in ligand geometry and co-ordination environment to vary magnetic behaviour. More recently it has been demonstrated that high hydrostatic pressure are also an effective mechanism for "tuning" properties such as magnetic susceptibility in a variety of SMMs.[2] The number of studies utilising high hydrostatic pressure to investigate molecular magnetism is extremely limited due to their inherent difficulty however we report a new study investigating the pressure tunabilty of Re(IV) based SMMs. 4d and 5d metal ions such as Re are of interest due their enhanced magnetic exchanges relative to their 3d analogues and Re(IV) based complexes are of particular interest. Previous studies into [ReX<jats:sub>6</jats:sub>]<jats:sup>2</jats:sup><jats:sup>-</jats:sup>(X = Cl, Br and I) anions demonstrate significant antiferromagnetic coupling, not transmitted through chemical interactions but rather through weak Re-X...X interactions in the solid state which may be easily perturbed at high pressure. [3] Therefore we report an investigation into the tunability of magnetic susceptibility in a variety of [ReX<jats:sub>4</jats:sub>] based compounds using high pressure magnetic susceptibility measurements and correlate the results with structure observations taken from high pressure single crystal X-ray diffraction experiments. The effects of the removal of solvent trapped in the lattice using temperature and vacuum and the corresponding effect on magnetic behaviour and chemical structure are also reported.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • single crystal X-ray diffraction
  • single crystal
  • experiment
  • susceptibility