Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ishimaru, Satoko

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Single-crystal structure refinements and Debye temperatures of Ir<sub>2</sub>S<sub>3</sub> kashinite and Rh<sub>2</sub>S<sub>3</sub> bowieitecitations

Places of action

Chart of shared publication
Terai, Kunihisa
1 / 1 shared
Ono, Shin-Ichiro
1 / 1 shared
Nakatsuka, Akihiko
1 / 1 shared
Yoshiasa, Akira
1 / 3 shared
Sugiyama, Kazumasa
1 / 5 shared
Tokuda, Makoto
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Terai, Kunihisa
  • Ono, Shin-Ichiro
  • Nakatsuka, Akihiko
  • Yoshiasa, Akira
  • Sugiyama, Kazumasa
  • Tokuda, Makoto
OrganizationsLocationPeople

article

Single-crystal structure refinements and Debye temperatures of Ir<sub>2</sub>S<sub>3</sub> kashinite and Rh<sub>2</sub>S<sub>3</sub> bowieite

  • Terai, Kunihisa
  • Ono, Shin-Ichiro
  • Nakatsuka, Akihiko
  • Yoshiasa, Akira
  • Sugiyama, Kazumasa
  • Ishimaru, Satoko
  • Tokuda, Makoto
Abstract

<jats:p>Single crystals of Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (diiridium trisulfide) and Rh<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (dirhodium trisulfide) were grown in evacuated silica-glass tubes using a chemical transport method and their crystal structures were determined by single-crystal X-ray diffraction analysis. These compounds have a unique sesquisulfide structure in which pairs of face-sharing octahedra are linked into a three-dimensional structure by further edge- and vertex-sharing. Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> and Rh<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> had similar unit-cell parameters and bond distances. The atomic displacement parameter (MSD: mean-square displacement) of each atom in Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> was considerably smaller than that in Rh<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>. The Debye temperatures (Θ<jats:sub>D</jats:sub>) estimated from the observed MSDs for the Ir, S1 and S2 sites in Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> were 259, 576 and 546 K, respectively, and those for Rh, S1 and S2 in Rh<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> were 337, 533 and 530 K, respectively. The bulk Debye temperature for Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> kashinite (576 K) was found to rank among the higher values reported for many known sulfides. The bulk Debye temperature for Rh<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> bowieite (533 K) was lower than that for Ir<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> kashinite, which crystallizes in the early sequences of mineral crystallization differentiation from the primitive magma in the Earth's mantle.</jats:p>

Topics
  • mineral
  • compound
  • single crystal
  • x-ray diffraction
  • glass
  • glass
  • crystallization