Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nénert, Gwilherm

  • Google
  • 5
  • 30
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO610citations
  • 2020Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study3citations
  • 2020Crystal structure and thermal behavior of Bi 6 Te 2 O 154citations
  • 2017Oxygen vacancy ordering in SrFe0.25Co0.75O2.63 perovskite material4citations
  • 2013Magnetic Properties of the RbMnPO4 Zeolite-ABW-Type Material: A Frustrated Zigzag Spin Chain.19citations

Places of action

Chart of shared publication
Mills, Stuart J.
2 / 3 shared
Hadermann, Joke
1 / 40 shared
Missen, Owen P.
2 / 3 shared
Libowitzky, Eugen
1 / 2 shared
Rumsey, Michael S.
1 / 2 shared
Artner, Werner
1 / 1 shared
Housley, Robert M.
1 / 1 shared
Canossa, Stefano
1 / 3 shared
Weil, Matthias
2 / 4 shared
Dunstan, Maja
1 / 1 shared
Spratt, John
1 / 11 shared
Amara, Mongi Ben
1 / 1 shared
Murshed, Mohammad Mangir
1 / 7 shared
Hamed, Teycir Ben
1 / 1 shared
Gesing, Thorsten M.
1 / 12 shared
Blake, Graeme R.
1 / 46 shared
Kampf, Anthony R.
1 / 2 shared
Lian, Hong
1 / 2 shared
Chennabasappa, Madhu
1 / 8 shared
Gaudin, Etienne
2 / 48 shared
García-Martín, Susana
1 / 3 shared
Fernández-Sanjulián, Javier
1 / 2 shared
Wattiaux, Alain
1 / 36 shared
Toulemonde, Olivier
1 / 14 shared
Whangbo, Myung-Hwan
1 / 14 shared
Ben Yahia, Hamdi
1 / 3 shared
Kremer, Reinhard
1 / 1 shared
Ritter, Clemens
1 / 25 shared
Isnard, Olivier
1 / 70 shared
Bettis, Jerry
1 / 1 shared
Chart of publication period
2022
2020
2017
2013

Co-Authors (by relevance)

  • Mills, Stuart J.
  • Hadermann, Joke
  • Missen, Owen P.
  • Libowitzky, Eugen
  • Rumsey, Michael S.
  • Artner, Werner
  • Housley, Robert M.
  • Canossa, Stefano
  • Weil, Matthias
  • Dunstan, Maja
  • Spratt, John
  • Amara, Mongi Ben
  • Murshed, Mohammad Mangir
  • Hamed, Teycir Ben
  • Gesing, Thorsten M.
  • Blake, Graeme R.
  • Kampf, Anthony R.
  • Lian, Hong
  • Chennabasappa, Madhu
  • Gaudin, Etienne
  • García-Martín, Susana
  • Fernández-Sanjulián, Javier
  • Wattiaux, Alain
  • Toulemonde, Olivier
  • Whangbo, Myung-Hwan
  • Ben Yahia, Hamdi
  • Kremer, Reinhard
  • Ritter, Clemens
  • Isnard, Olivier
  • Bettis, Jerry
OrganizationsLocationPeople

article

Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6

  • Mills, Stuart J.
  • Hadermann, Joke
  • Missen, Owen P.
  • Libowitzky, Eugen
  • Rumsey, Michael S.
  • Artner, Werner
  • Housley, Robert M.
  • Canossa, Stefano
  • Weil, Matthias
  • Dunstan, Maja
  • Spratt, John
  • Nénert, Gwilherm
Abstract

<jats:p>Synthetic and naturally occurring forms of tricopper orthotellurate, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> is shown to occur in two polytypes. The higher-symmetric Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-1<jats:italic>C</jats:italic> polytype is cubic, space group <jats:italic>Ia</jats:italic><jats:overline>3</jats:overline>, with <jats:italic>a</jats:italic> = 9.537 (1) Å and <jats:italic>V</jats:italic> = 867.4 (3) Å<jats:sup>3</jats:sup> as reported in previous studies. The 1<jats:italic>C</jats:italic> polytype is a well characterized structure consisting of alternating layers of Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> octahedra and both Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> and Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2<jats:italic>O</jats:italic> polytype crystallizes in space group <jats:italic>Pcca</jats:italic>, with <jats:italic>a</jats:italic> = 9.745 (3) Å, <jats:italic>b</jats:italic> = 9.749 (2) Å, <jats:italic>c</jats:italic> = 9.771 (2) Å and <jats:italic>V</jats:italic> = 928.3 (4) Å<jats:sup>3</jats:sup>. High-precision XRPD data were also collected on Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters <jats:italic>a</jats:italic> = 9.56157 (19) Å, <jats:italic>b</jats:italic> = 9.55853 (11) Å, <jats:italic>c</jats:italic> = 9.62891 (15) Å and <jats:italic>V</jats:italic> = 880.03 (2) Å<jats:sup>3</jats:sup>. The lower symmetry of the 2<jats:italic>O</jats:italic> polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> and Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> octahedral layer by (1/4, 1/4, 0), leading to an offset of Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> and Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> octahedra in every second layer giving an <jats:italic>ABAB</jats:italic>* stacking arrangement. Syntheses of Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> showed that low-temperature (473 K) hydrothermal conditions generally produce the 2<jats:italic>O</jats:italic> polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2<jats:italic>O</jats:italic> polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>. In Raman spectroscopy, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-1<jats:italic>C</jats:italic> has a single strong band around 730 cm<jats:sup>−1</jats:sup>, whereas Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> shows a broad double maximum with bands centred around 692 and 742 cm<jats:sup>−1</jats:sup>.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • electron diffraction
  • Raman spectroscopy
  • space group