People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hadermann, Joke
University of Antwerp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenizationcitations
- 2024Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction datacitations
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.citations
- 2023Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1–x (x = 0.08, 0.2) with a layered perovskite networkcitations
- 2022The crystal and defect structures of polar KBiNb 2 O 7
- 2022The crystal and defect structures of polar KBiNb2O7
- 2022Topotactic redox cycling in SrFeO 2.5+δ explored by 3D electron diffraction in different gas atmospherescitations
- 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6citations
- 2021Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba)citations
- 2021Determination of Spinel Content in Cycled Li1.2Ni0.13Mn0.54Co0.13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffractioncitations
- 2021Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr₃ nanocrystalscitations
- 2021Antiferromagnetic Order Breaks Inversion Symmetry in a Metallic Double Perovskite, Pb2NiOsO6citations
- 2020Compatibility of $Zr_{2}AlC$ MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic
- 2020Ambient and high pressure CuNiSb₂citations
- 2020Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutecticcitations
- 2020Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzerscitations
- 2020Atomic and electronic structure of a multidomain GeTe crystalcitations
- 2020Compatibility of Zr<sub>2</sub>AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutecticcitations
- 2020Magnetic ordering in the layered Cr(II) oxide arsenides Sr₂CrO₂Cr₂As₂ and Ba₂CrO₂Cr₂As₂citations
- 2020Investigating the effect of sulphurization on volatility of compositions in Cu-poor and Sn-rich CZTS thin filmscitations
- 2019Synthesis and Characterization of Double Solid Solution (Zr,Ti) 2 (Al,Sn)C MAX Phase Ceramicscitations
- 2019Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramicscitations
- 2019Interstitial defects in the van der Waals gap of Bi2Se3citations
- 2018MnFe0.5Ru0.5O3: An Above-Room-Temperature Antiferromagnetic Semiconductorcitations
- 2018Complex magnetic ordering in the oxide selenide Sr2Fe3Se2O3citations
- 2017Grain-boundary engineering for aging and slow-crack-growth resistant zirconiacitations
- 2017Synthesis of MAX Phases in the Zr-Ti-Al-C Systemcitations
- 2016Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilationcitations
- 2016Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 filmscitations
- 2016Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations
- 2015Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatmentcitations
- 2015Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se-2 solar cellscitations
- 2015Co-rich ZnCoO nanoparticles embedded in wurtzite <tex>$Zn_{1-x}Co_{x}O$</tex> thin filmscitations
- 2015Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigationscitations
- 2015Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregationcitations
- 2014Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cellscitations
- 2014Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphorscitations
- 2014Influence of the structure on the properties of <tex>$Na_{x}Eu_{y}(MoO_{4})_{z}$</tex> red phosphorscitations
- 2012Artificial construction of the layered Ruddlesden–Popper Manganite La2Sr2Mn3O10by reflection high energy electron diffraction monitored pulsed laser deposition
- 2011Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr5BiNi2O9.6citations
Places of action
Organizations | Location | People |
---|
article
Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6
Abstract
<jats:p>Synthetic and naturally occurring forms of tricopper orthotellurate, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> is shown to occur in two polytypes. The higher-symmetric Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-1<jats:italic>C</jats:italic> polytype is cubic, space group <jats:italic>Ia</jats:italic><jats:overline>3</jats:overline>, with <jats:italic>a</jats:italic> = 9.537 (1) Å and <jats:italic>V</jats:italic> = 867.4 (3) Å<jats:sup>3</jats:sup> as reported in previous studies. The 1<jats:italic>C</jats:italic> polytype is a well characterized structure consisting of alternating layers of Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> octahedra and both Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> and Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2<jats:italic>O</jats:italic> polytype crystallizes in space group <jats:italic>Pcca</jats:italic>, with <jats:italic>a</jats:italic> = 9.745 (3) Å, <jats:italic>b</jats:italic> = 9.749 (2) Å, <jats:italic>c</jats:italic> = 9.771 (2) Å and <jats:italic>V</jats:italic> = 928.3 (4) Å<jats:sup>3</jats:sup>. High-precision XRPD data were also collected on Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters <jats:italic>a</jats:italic> = 9.56157 (19) Å, <jats:italic>b</jats:italic> = 9.55853 (11) Å, <jats:italic>c</jats:italic> = 9.62891 (15) Å and <jats:italic>V</jats:italic> = 880.03 (2) Å<jats:sup>3</jats:sup>. The lower symmetry of the 2<jats:italic>O</jats:italic> polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> and Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> octahedral layer by (1/4, 1/4, 0), leading to an offset of Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> and Cu<jats:sup>II</jats:sup>O<jats:sub>6</jats:sub> octahedra in every second layer giving an <jats:italic>ABAB</jats:italic>* stacking arrangement. Syntheses of Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub> showed that low-temperature (473 K) hydrothermal conditions generally produce the 2<jats:italic>O</jats:italic> polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2<jats:italic>O</jats:italic> polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>. In Raman spectroscopy, Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-1<jats:italic>C</jats:italic> has a single strong band around 730 cm<jats:sup>−1</jats:sup>, whereas Cu<jats:sup>II</jats:sup><jats:sub>3</jats:sub>Te<jats:sup>VI</jats:sup>O<jats:sub>6</jats:sub>-2<jats:italic>O</jats:italic> shows a broad double maximum with bands centred around 692 and 742 cm<jats:sup>−1</jats:sup>.</jats:p>