People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pavlyuk, Volodymyr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Intermetallic Materials for High-Capacity Hydrogen Storage Systems
- 2023MAl4Ir2 (M = Ca, Sr, Eu): superstructures of the KAu4In2 typecitations
- 2022MAl4Ir2 (M = Ca, Sr, Eu) : superstructures of the KAu4In2 type
- 2021Electrochemical hydrogenation, lithiation and sodiation of the GdFe2–xMx and GdMn2–xMx intermetallics
- 2021Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additivescitations
- 2019Li20Mg6Cu13Al42: a new ordered quaternary superstructure to the icosahedral T-Mg32(Zn,Al)49 phase with fullerene-like Al60 clustercitations
- 2019La3Ni4Al2: a new layered aluminidecitations
- 2017LiBC<sub>3</sub>: a new borocarbide based on graphene and heterographene networkscitations
- 2014High hydrogen content super-lightweight intermetallics from the Li–Mg–Si systemcitations
- 2012Terbium (lithium zinc) distannide, TbLi1–xZnxSn2 (x = 0.2)citations
Places of action
Organizations | Location | People |
---|
article
Li20Mg6Cu13Al42: a new ordered quaternary superstructure to the icosahedral T-Mg32(Zn,Al)49 phase with fullerene-like Al60 cluster
Abstract
<jats:p>The new quaternary aluminide Li<jats:sub>20</jats:sub>Mg<jats:sub>6</jats:sub>Cu<jats:sub>13</jats:sub>Al<jats:sub>42</jats:sub> was synthesized from the elements in a sealed tantalum crucible. The crystal structure was studied by single crystal and confirmed by X-ray powder diffraction. Li<jats:sub>20</jats:sub>Mg<jats:sub>6</jats:sub>Cu<jats:sub>13</jats:sub>Al<jats:sub>42</jats:sub> {<jats:italic>cI</jats:italic>162, Im{ 3}, <jats:italic>a</jats:italic> = 13.8451 (2), <jats:italic>R</jats:italic>[<jats:italic>F</jats:italic><jats:sup>2</jats:sup> > 2σ(<jats:italic>F</jats:italic><jats:sup>2</jats:sup>)] = 0.023} crystallizes as an ordered version of Mg<jats:sub>32</jats:sub>(Al,Zn)<jats:sub>49</jats:sub> and Li—Cu—<jats:italic>X</jats:italic> (<jats:italic>X</jats:italic> = Al, Ga, Si) periodic crystals containing icosahedral clusters. The Li<jats:sub>20</jats:sub>Mg<jats:sub>6</jats:sub>Cu<jats:sub>13</jats:sub>Al<jats:sub>42</jats:sub> structure can also be described as three-shell icosahedral clusters of [CuAl<jats:sub>12</jats:sub>@Li<jats:sub>20</jats:sub>Cu<jats:sub>12</jats:sub>@Al<jats:sub>60</jats:sub>], enclosed inside a distorted triacontahedron. The electronic structure calculations were performed by means of the <jats:italic>TB-LMTO-ASA</jats:italic> program and confirm the core–shell packing of these clusters. The isostructural compound of Li<jats:sub>20</jats:sub>Mg<jats:sub>6</jats:sub>Cu<jats:sub>13</jats:sub>Ga<jats:sub>42</jats:sub> was found in a Li–Mg–Cu–Ga quaternary system.</jats:p>