People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Mads Ry Vogel
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe 1/2 Nb 1/2 )O 3citations
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Weyl semimetallic phase in high pressure CrSb 2 and structural compression studies of its high pressure polymorphs
- 2024Weyl semimetallic phase in high pressure CrSb$_2$ and structural compression studies of its high pressure polymorphs
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe1/2Nb1/2)O3citations
- 2024Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO3 ceramicscitations
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO 3 ceramicscitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of Pb x Pd y intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2023Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cellscitations
- 2022An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2022Methods—Spatially Resolved Diffraction Study of the Uniformity of a Li-Ion Pouch Cellcitations
- 2022An Easy‐to‐Use Custom‐Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2021Size-induced amorphous structure in tungsten oxide nanoparticlescitations
- 2021Low temperature aging in a molecular glasscitations
- 2017Accurate charge densities from powder X-ray diffraction - a new version of the Aarhus vacuum imaging-plate diffractometercitations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2citations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH4)2[Cu(H2O)6](SO4)2citations
- 2012Charge density study of two FeS2 polymorphs
- 2012Charge density study of two FeS2 polymorphs:Experimental charge density study of two FeS2 structures
Places of action
Organizations | Location | People |
---|
article
Accurate charge densities from powder X-ray diffraction - a new version of the Aarhus vacuum imaging-plate diffractometer
Abstract
<p>In recent years powder X-ray diffraction has proven to be a valuable alternative to single-crystal X-ray diffraction for determining electron-density distributions in high-symmetry inorganic materials, including subtle deformation in the core electron density. This was made possible by performing diffraction measurements in vacuum using high-energy X-rays at a synchrotron-radiation facility. Here we present a new version of our custom-built in-vacuum powder diffractometer with the sample-to-detector distance increased by a factor of four. In practice this is found to give a reduction in instrumental peak broadening by approximately a factor of three and a large improvement in signal-to-background ratio compared to the previous instrument. Structure factors of silicon at room temperature are extracted using a combined multipole-Rietveld procedure and compared with ab initio calculations and the results from the previous diffractometer. Despite some remaining issues regarding peak asymmetry, the new diffractometer yields structure factors of comparable accuracy to the previous diffractometer at low angles and improved accuracy at high angles. The high quality of the structure factors is further assessed by modelling of core electron deformation with results in good agreement with previous investigations.The present state of X-ray electron-density determination from powder-diffraction data is briefly reviewed together with the first results from a new large-diameter in-vacuum diffractometer.</p>