People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolb, Ute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering
- 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (Hf<sub><i>x</i></sub>Ta<sub>1−<i>x</i></sub>)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sinteringcitations
- 2023Synthesis and Structure Evolution in Metal Carbazole Diphosphonates Followed by Electron Diffractioncitations
- 2022Crystal structure determination of a new LaPO4 phase in a multicomponent glass ceramic via 3D electron diffractioncitations
- 2021Electrochemical reduction and oxidation of Ruddlesden–Popper-type La2NiO3F2 within fluoride-ion batteriescitations
- 20193D Electron Diffraction: The Nanocrystallography Revolutioncitations
- 2018Highly stable and porous porphyrin-based zirconium and hafnium phosphonates - electron crystallography as an important tool for structure elucidationcitations
- 2018From Single Molecules to Nanostructured Functional Materialscitations
- 2017Snapshots of calcium carbonate Formation - a step by step analysiscitations
- 2016Hierachical Ni@Fe2O3 superparticles through epitaxial growth of gamma-Fe2O3 nanorods on in situ formed Ni nanoplatescitations
- 2015Structural insights into<i>M</i><sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub>(<i>M</i>= Na, K) system by electron diffraction tomographycitations
- 2015Crystalline Non‐Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligandscitations
- 2015Structural insights into M2O–Al2O3–WO3 (M = Na, K) system by electron diffraction tomographycitations
- 2014Rational assembly and dual functionalization of Au@MnO heteroparticles on TiO2 nanowirescitations
- 2014Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction datacitations
- 2013In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type $In_{2}O_{3}$ and synthesis of corundum-type and orthorhombic $In_{2}O_{3}$ polymorphscitations
- 2013Graphene-type sheets of Nb1-xWxS2citations
- 2011Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorodscitations
- 2009Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>9</sub>citations
- 2007Solid-state pyrolysis of polyphenylene-metal complexes:A facile approach toward carbon nanoparticlescitations
- 2005Uniaxial alignment of poly cyclic aromatic hydrocarbons by solution processingcitations
Places of action
Organizations | Location | People |
---|
article
Structural insights into<i>M</i><sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub>(<i>M</i>= Na, K) system by electron diffraction tomography
Abstract
<jats:p>The<jats:italic>M</jats:italic><jats:sub>2</jats:sub>O–Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–WO<jats:sub>3</jats:sub>(<jats:italic>M</jats:italic>= alkaline metals) system has attracted the attention of the scientific community because some of its members showed potential applications as single crystalline media for tunable solid-state lasers. These materials behave as promising laser host materials due to their high and continuous transparency in the wide range of the near-IR region. A systematic investigation of these phases is nonetheless hampered because it is impossible to produce large crystals and only in a few cases a pure synthetic product can be achieved. Despite substantial advances in X-ray powder diffraction methods, structure investigation on nanoscale is still challenging, especially when the sample is polycrystalline and the structures are affected by pseudo-symmetry. Electron diffraction has the advantage of collecting data from single nanoscopic crystals, but it is frequently limited by incompleteness and dynamical effects. Automated diffraction tomography (ADT) recently emerged as an alternative approach able to collect more complete three-dimensional electron diffraction data and at the same time to significantly reduce dynamical scattering. ADT data have been shown to be suitable for<jats:italic>ab</jats:italic><jats:italic>initio</jats:italic>structure solution of phases with large cell parameters, and for detecting pseudo-symmetry that was undetected in X-ray powder data. In this work we present the structure investigation of two hitherto undetermined compounds, K<jats:sub>5</jats:sub>Al(W<jats:sub>3</jats:sub>O<jats:sub>11</jats:sub>)<jats:sub>2</jats:sub>and NaAl(WO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>, by a combination of electron diffraction tomography and precession electron diffraction. We also stress how electron diffraction tomography can be used to obtain direct information about symmetry and pseudo-symmetry for nanocrystalline phases, even when available only in polyphasic mixtures.</jats:p>