Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiaberge, Christophe

  • Google
  • 2
  • 7
  • 156

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Inversion of non-invasive resistivity measurements in fourelectrodes configuration for corrosion characterization in reinforced concrete samplescitations
  • 2013X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates156citations

Places of action

Chart of shared publication
Gance, Julien
1 / 2 shared
Betelu, Stéphanie
1 / 28 shared
Fargier, Yannick
1 / 6 shared
Holzhauer, Julia
1 / 1 shared
Grangeon, Sylvain
1 / 15 shared
Claret, Francis
1 / 16 shared
Linard, Yannick
1 / 9 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Gance, Julien
  • Betelu, Stéphanie
  • Fargier, Yannick
  • Holzhauer, Julia
  • Grangeon, Sylvain
  • Claret, Francis
  • Linard, Yannick
OrganizationsLocationPeople

article

X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates

  • Grangeon, Sylvain
  • Chiaberge, Christophe
  • Claret, Francis
  • Linard, Yannick
Abstract

X-ray diffraction (XRD) patterns were calculated and compared to literature data with the aim of investigating the crystal structure of nanocrystalline calcium silicate hydrates (C-S-H), the main binding phase in hydrated Portland cement pastes. Published XRD patterns from C-S-H of Ca/Si ratios ranging from similar to 0.6 to similar to 1.7 are fully compatible with nanocrystalline and turbostratic tobermorite. Even at a ratio close or slightly higher than that of jennite (Ca/Si = 1.5) this latter mineral, which is required in some models to describe the structure of C-S-H, is not detected in the experimental XRD patterns. The 001 basal reflection from C-S-H, positioned at similar to 13.5 angstrom when the C-S-H structural Ca/Si ratio is low (< 0.9), shifts towards smaller d values and sharpens with increasing Ca/Si ratio, to reach similar to 11.2 angstrom when the Ca/Si ratio is higher than 1.5. Calculations indicate that the sharpening of the 001 reflection may be related to a crystallite size along c* (i.e. a mean number of stacked layers) increasing with the C-S-H Ca/Si ratio. Such an increase would contribute to the observed shift of the 001 reflection, but fails to quantitatively explain it. It is proposed that the observed shift could result from interstratification of at least two tober-morite-like layers, one having a high and the other a low Ca/Si ratio with a basal spacing of 11.3 and 14 angstrom, respectively.

Topics
  • impedance spectroscopy
  • mineral
  • phase
  • x-ray diffraction
  • cement
  • Calcium