People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Hecke, Kristof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Elucidating the Non-Covalent Interactions that Trigger Interdigitation in Lead-Halide Layered Hybrid Perovskites.citations
- 2024Elucidating the non-covalent interactions that trigger interdigitation in lead-halide layered hybrid perovskitescitations
- 2024Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure
- 2023Visible light‐fueled mechanical motions with dynamic phosphorescence induced by topochemical [2+2] reactions in organoboron crystalscitations
- 20233D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells.
- 20233D perovskite passivation with a benzotriazole-based 2D interlayer for high-efficiency solar cellscitations
- 2023Turning 3D covalent organic frameworks into luminescent ratiometric temperature sensorscitations
- 2022Improving green Yb3+/Er3+ upconversion luminescence by co-doping metal ions into an oxyfluoride matrix
- 2022Hybrid lanthanide-doped rattle-type thermometers for theranosticscitations
- 2022CuI nanoparticle-catalyzed regioselective synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines using oxygen as oxidantcitations
- 2021Directing the self-assembly of conjugated organic ammonium cations in low-dimensional perovskites by halide substitutioncitations
- 2019Chromium(iii) in deep eutectic solvents: towards a sustainable chromium(vi)-free steel plating processcitations
- 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperaturescitations
- 2018Understanding the importance of Cu(I) intermediates in self-reducing molecular inks for flexible electronicscitations
- 2016Mechanochemically synthesized crystalline luminescent 2D coordination polymers of La3+ and Ce3+, doped with Sm3+, Eu3+, Tb3+, and Dy3+: synthesis, crystal structures and luminescencecitations
- 2012Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligandscitations
- 2010Cobalt(II) complexes of nitrile-functionalized ionic liquidscitations
- 2009Pyrrolidinium Ionic Liquid Crystalscitations
- 2004Lanthanide(III) nitrobenzenesulfonates as new nitration catalysts: The role of the metal and of the counterion in the catalytic efficiencycitations
Places of action
Organizations | Location | People |
---|
article
Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure
Abstract
<jats:p>Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.</jats:p>