Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cuesta, Ana

  • Google
  • 5
  • 30
  • 179

Universidad de Málaga

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studiescitations
  • 20234D nanoimaging of early age cement hydration28citations
  • 2021Quantitative analysis of cementitious materials by X-ray ptychographic nanotomographycitations
  • 2019Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography28citations
  • 2018Multiscale understanding of tricalcium silicate hydration reactions123citations

Places of action

Chart of shared publication
Fernández-Sánchez, Jaime
1 / 1 shared
León-Reina, Laura
1 / 6 shared
Shirani, Shiva
3 / 6 shared
Santacruz-Cruz, María Isabel
1 / 9 shared
Redondo-Soto, Cinthya
1 / 2 shared
García-Aranda, Miguel Ángel
1 / 17 shared
Torre, Ángeles G. De La
2 / 2 shared
Salcedo, Inés R.
1 / 6 shared
Brun, Emmanuel
1 / 4 shared
Lukic, Bratislav
1 / 4 shared
Santacruz, Isabel
3 / 3 shared
Inés, R. Salcedo
1 / 1 shared
Aranda, Miguel A. G.
3 / 4 shared
Holler, Mirko
3 / 17 shared
Rack, Alexander
1 / 18 shared
Morales-Cantero, Alejandro
1 / 4 shared
Trtik, Pavel
3 / 26 shared
Diaz, Ana
3 / 20 shared
De La Torre, Angeles, G.
1 / 1 shared
Karpov, Dmitry
1 / 6 shared
Da Silva, Julio Cesar
1 / 4 shared
Aranda, Miguel, A. G.
1 / 1 shared
Lothenbach, Barbara
1 / 314 shared
De La Torre, Ángeles G.
1 / 1 shared
Vallcorba, Oriol
1 / 10 shared
Londono-Zuluaga, Diana
1 / 10 shared
Sanfelix, Susana G.
1 / 1 shared
Zea-Garcia, Jesus D.
1 / 4 shared
De La Torre, Angeles G.
1 / 1 shared
Dapiaggi, Monica
1 / 6 shared
Chart of publication period
2024
2023
2021
2019
2018

Co-Authors (by relevance)

  • Fernández-Sánchez, Jaime
  • León-Reina, Laura
  • Shirani, Shiva
  • Santacruz-Cruz, María Isabel
  • Redondo-Soto, Cinthya
  • García-Aranda, Miguel Ángel
  • Torre, Ángeles G. De La
  • Salcedo, Inés R.
  • Brun, Emmanuel
  • Lukic, Bratislav
  • Santacruz, Isabel
  • Inés, R. Salcedo
  • Aranda, Miguel A. G.
  • Holler, Mirko
  • Rack, Alexander
  • Morales-Cantero, Alejandro
  • Trtik, Pavel
  • Diaz, Ana
  • De La Torre, Angeles, G.
  • Karpov, Dmitry
  • Da Silva, Julio Cesar
  • Aranda, Miguel, A. G.
  • Lothenbach, Barbara
  • De La Torre, Ángeles G.
  • Vallcorba, Oriol
  • Londono-Zuluaga, Diana
  • Sanfelix, Susana G.
  • Zea-Garcia, Jesus D.
  • De La Torre, Angeles G.
  • Dapiaggi, Monica
OrganizationsLocationPeople

article

Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography

  • Santacruz, Isabel
  • Aranda, Miguel A. G.
  • Holler, Mirko
  • Torre, Ángeles G. De La
  • Lothenbach, Barbara
  • De La Torre, Ángeles G.
  • Trtik, Pavel
  • Cuesta, Ana
  • Diaz, Ana
Abstract

<jats:p>Mortars and concretes are ubiquitous materials with very complex hierarchical microstructures. To fully understand their main properties and to decrease their CO<jats:sub>2</jats:sub> footprint, a sound description of their spatially resolved mineralogy is necessary. Developing this knowledge is very challenging as about half of the volume of hydrated cement is a nanocrystalline component, calcium silicate hydrate (C-S-H) gel. Furthermore, other poorly crystalline phases (<jats:italic>e.g.</jats:italic> iron siliceous hydrogarnet or silica oxide) may coexist, which are even more difficult to characterize. Traditional spatially resolved techniques such as electron microscopy involve complex sample preparation steps that often lead to artefacts (<jats:italic>e.g.</jats:italic> dehydration and microstructural changes). Here, synchrotron ptychographic tomography has been used to obtain spatially resolved information on three unaltered representative samples: neat Portland paste, Portland–calcite and Portland–fly-ash blend pastes with a spatial resolution below 100 nm in samples with a volume of up to 5 × 10<jats:sup>4</jats:sup> µm<jats:sup>3</jats:sup>. For the neat Portland paste, the ptychotomographic study gave densities of 2.11 and 2.52 g cm<jats:sup>−3</jats:sup> and a content of 41.1 and 6.4 vol% for nanocrystalline C-S-H gel and poorly crystalline iron siliceous hydrogarnet, respectively. Furthermore, the spatially resolved volumetric mass-density information has allowed characterization of inner-product and outer-product C-S-H gels. The average density of the inner-product C-S-H is smaller than that of the outer product and its variability is larger. Full characterization of the pastes, including segmentation of the different components, is reported and the contents are compared with the results obtained by thermodynamic modelling.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • amorphous
  • phase
  • crystalline phase
  • tomography
  • cement
  • electron microscopy
  • iron
  • Calcium