People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sanchez Llamazares, Jose Luis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Magnetostructural transition and magnetocaloric effect in Mn<sub>0.5</sub>Fe<sub>0.5</sub>NiSi<sub>1−x</sub>Al<sub>x</sub> melt-spun ribbons (<i>x</i> = 0.055 and 0.060)citations
- 2023Structural, magnetic, and magnetocaloric characterization of NiMnSn microwires prepared by Taylor-Ulitovsky techniquecitations
- 2018Phase transition and magnetocaloric properties of Mn50Ni42−x Co x Sn8 (0 ≤ x ≤ 10) melt-spun ribbonscitations
Places of action
Organizations | Location | People |
---|
article
Phase transition and magnetocaloric properties of Mn50Ni42−x Co x Sn8 (0 ≤ x ≤ 10) melt-spun ribbons
Abstract
<jats:p>The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn<jats:sub>50</jats:sub>Ni<jats:sub>42−<jats:italic>x</jats:italic></jats:sub>Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Sn<jats:sub>8</jats:sub> (0 ≤ <jats:italic>x</jats:italic> ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at <jats:italic>T</jats:italic><jats:sub>C</jats:sub> on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at <jats:italic>T</jats:italic><jats:sub>M</jats:sub>. Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change Δ<jats:italic>S</jats:italic><jats:sub>M</jats:sub> of 18.6 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> and an effective refrigerant capacity <jats:italic>RC</jats:italic><jats:sub>eff</jats:sub> of up to 178 J kg<jats:sup>−1</jats:sup> can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration.</jats:p>