People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moura, José J. G.
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2019Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocompositecitations
- 2019Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocompositecitations
- 2019Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detectioncitations
- 2014Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organismcitations
- 2011Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria
- 2011Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteriacitations
- 2011Bacterial diversity and influence of SRB presence on metal behaviour within the oil & gas industry
- 2009Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254citations
- 2009Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysiscitations
- 2005Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rayscitations
- 2004Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxincitations
- 2003Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from treponema pallidum and Desulfovibrio vulgaris with K3Fe(CN)6citations
- 2001Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallographycitations
- 2000Evidence for antisymmetric exchange in cuboidal [3Fe-4S]+ clusterscitations
Places of action
Organizations | Location | People |
---|
article
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis
Abstract
Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 angstrom resolution. Furthermore, cobalt-and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 angstrom resolution, respectively. Zn2+-AK and Fe2+-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co2+-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn2+-AK and Fe2+-AK forms and a dimer was present for the Co2+-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.