People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bellot-Gurlet, Ludovic
Sorbonne Université
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024On‐site Raman and XRF study of complex metal patinas and cloisonné enamels From 19th‐century Christofle masterpieces: Technological study of the decoration techniques
- 2022Chemical characterization of inks in skin reactions to tattoocitations
- 2018FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systemscitations
- 2015Bioimpact on weathering steel surfaces: Oxalates formation and the elucidation of their origincitations
- 2014Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structurescitations
- 2012Raman mapping for the investigation of nanophased materialscitations
- 2011Passive corrosion of steel in concrete in context of nuclear waste disposalcitations
- 2009Multisecular corrosion behaviour of low carbon steel in anoxic soils: Characterisation of corrosion system on archaeological artefactscitations
- 2007Contribution of iron archaeological artefacts to the estimation of average corrosion rates and the long term corrosion mechanisms of low carbon steel buried in steelcitations
- 20074 - Contribution of iron archaeological artefacts to the estimation of average corrosion rates and the long-term corrosion mechanisms of low-carbon steel buried in soilcitations
Places of action
Organizations | Location | People |
---|
article
Chemical characterization of inks in skin reactions to tattoo
Abstract
<jats:p>Skin reactions are well described complications of tattooing, usually provoked by red inks. Chemical characterizations of these inks are usually based on limited subjects and techniques. This study aimed to determine the organic and inorganic composition of inks using X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy (XANES) and Raman spectroscopy, in a cohort of patients with cutaneous hypersensitivity reactions to tattoo. A retrospective multicenter study was performed, including 15 patients diagnosed with skin reactions to tattoos. Almost half of these patients developed skin reactions on black inks. XRF identified known allergenic metals – titanium, chromium, manganese, nickel and copper – in almost all cases. XANES spectroscopy distinguished zinc and iron present in ink from these elements in endogenous biomolecules. Raman spectroscopy showed the presence of both reported (azo pigments, quinacridone) and unreported (carbon black, phtalocyanine) putative organic sensitizer compounds, and also defined the phase in which Ti was engaged. To the best of the authors' knowledge, this paper reports the largest cohort of skin hypersensitivity reactions analyzed by multiple complementary techniques. With almost half the patients presenting skin reaction on black tattoo, the study suggests that black modern inks should also be considered to provoke skin reactions, probably because of the common association of carbon black with potential allergenic metals within these inks. Analysis of more skin reactions to tattoos is needed to identify the relevant chemical compounds and help render tattoo ink composition safer.</jats:p>