Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brinkop, Achim Theo

  • Google
  • 1
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 20223D-printed SAXS chamber for controlled <i>in situ</i> dialysis and optical characterization1citations

Places of action

Chart of shared publication
Westphalen, Miriam Von
1 / 1 shared
Simml, David
1 / 1 shared
Rädler, Joachim O.
1 / 1 shared
Nickel, Bert
1 / 11 shared
Ehm, Tamara
1 / 2 shared
Philipp, Julian
1 / 1 shared
Ober, Martina
1 / 1 shared
Barkey, Martin
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Westphalen, Miriam Von
  • Simml, David
  • Rädler, Joachim O.
  • Nickel, Bert
  • Ehm, Tamara
  • Philipp, Julian
  • Ober, Martina
  • Barkey, Martin
OrganizationsLocationPeople

article

3D-printed SAXS chamber for controlled <i>in situ</i> dialysis and optical characterization

  • Westphalen, Miriam Von
  • Simml, David
  • Rädler, Joachim O.
  • Nickel, Bert
  • Ehm, Tamara
  • Philipp, Julian
  • Ober, Martina
  • Barkey, Martin
  • Brinkop, Achim Theo
Abstract

<jats:p>3D printing changes the scope of how samples can be mounted for small-angle X-ray scattering (SAXS). In this paper a 3D-printed X-ray chamber, which allows for <jats:italic>in situ</jats:italic> exchange of buffer and <jats:italic>in situ</jats:italic> optical transmission spectroscopy, is presented. The chamber is made of cyclic olefin copolymers (COC), including COC X-ray windows providing ultra-low SAXS background. The design integrates a membrane insert for <jats:italic>in situ</jats:italic> dialysis of the 100 µl sample volume against a reservoir, which enables measurements of the same sample under multiple conditions using an in-house X-ray setup equipped with a 17.4 keV molybdenum source. The design's capabilities are demonstrated by measuring reversible structural changes in lipid and polymer systems as a function of salt concentration and pH. In the same chambers optical light transmission spectroscopy was carried out measuring the optical turbidity of the mesophases and local pH values using pH-responsive dyes. Microfluidic exchange and optical spectroscopy combined with <jats:italic>in situ</jats:italic> X-ray scattering enables vast applications for the study of responsive materials.</jats:p>

Topics
  • impedance spectroscopy
  • molybdenum
  • copolymer
  • small angle x-ray scattering
  • pH value
  • dialysis