Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Jitendra Pal

  • Google
  • 2
  • 13
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Local structure investigation of Co–Fe–Si–B ribbons by extended X-ray absorption fine-structure spectroscopy2citations
  • 2019Observation of Skyrmions at Room Temperature in Co2FeAl Heusler Alloy Ultrathin Film Heterostructures23citations

Places of action

Chart of shared publication
Asokan, K.
1 / 8 shared
Srivastava, A. P.
1 / 1 shared
Kumar, Ankit
1 / 5 shared
Sisodia, Naveen
1 / 1 shared
Chaurasiya, Avinash Kumar
1 / 1 shared
Muduli, P. K.
1 / 2 shared
Chae, Keun Hwa
1 / 1 shared
Svedlindh, Peter
1 / 20 shared
Yadav, Brajesh S.
1 / 1 shared
Barman, Anjan
1 / 3 shared
Chaudhary, Sujeet
1 / 7 shared
Akansel, Serkan
1 / 3 shared
Husain, Sajid
1 / 2 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Asokan, K.
  • Srivastava, A. P.
  • Kumar, Ankit
  • Sisodia, Naveen
  • Chaurasiya, Avinash Kumar
  • Muduli, P. K.
  • Chae, Keun Hwa
  • Svedlindh, Peter
  • Yadav, Brajesh S.
  • Barman, Anjan
  • Chaudhary, Sujeet
  • Akansel, Serkan
  • Husain, Sajid
OrganizationsLocationPeople

article

Local structure investigation of Co–Fe–Si–B ribbons by extended X-ray absorption fine-structure spectroscopy

  • Asokan, K.
  • Srivastava, A. P.
  • Singh, Jitendra Pal
Abstract

<jats:p>In the present work, extended X-ray absorption fine-structure (EXAFS) investigations of Co<jats:sub>69</jats:sub>Fe<jats:sub><jats:italic>x</jats:italic></jats:sub>Si<jats:sub>21–<jats:italic>x</jats:italic></jats:sub>B<jats:sub>10</jats:sub> (<jats:italic>x</jats:italic> = 3, 5, 7) glassy ribbons were performed at the Co <jats:italic>K</jats:italic>-edge. The magnitude of the first peak of the Fourier transforms of the EXAFS signals is found to increase monotonically with increasing Si concentrations indicating the formation of the localized ordered structure at the atomic scale. The Co–Si coordination number (CN) increases at the expense of the CN of Co/Fe. Smaller interatomic distances are observed in the glassy phase compared with that in the crystalline phase which promotes the stability of the glassy phase. Calculations of the thermodynamic parameter (<jats:italic>P</jats:italic><jats:sub>HSS</jats:sub>), cohesive energy (<jats:italic>E</jats:italic><jats:sub>C</jats:sub>) and the atomic radius difference (δ) parameter show that the alloy composition Co<jats:sub>69</jats:sub>Fe<jats:sub>3</jats:sub>Si<jats:sub>18</jats:sub>B<jats:sub>10</jats:sub> has a good glass-forming ability (GFA) with the highest CN of Si compared with other compositions. A linear correlation of CN with that of the GFA parameter (<jats:italic>P</jats:italic><jats:sub>HSS</jats:sub>) exists and the CN also plays a crucial role in the GFA of the glassy alloys. This parameter should be considered in developing different GFA criteria.</jats:p>

Topics
  • impedance spectroscopy
  • crystalline phase
  • glass
  • glass
  • forming
  • high speed steel
  • alloy composition
  • extended X-ray absorption fine structure spectroscopy