People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lähnemann, Jonas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Molecular beam epitaxy of single-crystalline bixbyite (In<SUB>1<SUB>−x</SUB>Ga<SUB>x</SUB> ) 2</SUB>O<SUB>3</SUB> films (x ≤0.18 ): Structural properties and consequences of compositional inhomogeneitycitations
- 2021Bandgap widening and behavior of Raman-active phonon modes of cubic single-crystalline (In,Ga)<SUB>2</SUB>O<SUB>3</SUB> alloy filmscitations
- 2020Beam damage of single semiconductor nanowires during X-ray nano beam diffraction experimentscitations
- 2020Plasma-assisted molecular beam epitaxy of NiO on GaN(00.1)citations
- 2014Luminescence associated with stacking faults in GaNcitations
- 2014Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiencycitations
- 2013Spatially resolved investigation of strain and composition variations in (In,Ga)N/GaN epilayerscitations
- 2012Optical switching and related structural properties of epitaxial Ge<SUB>2</SUB>Sb<SUB>2</SUB>Te<SUB>5</SUB> filmscitations
- 2012Direct experimental determination of the spontaneous polarization of GaNcitations
- 2011Self-assisted nucleation and vapor-solid growth of InAs nanowires on bare Si (111)citations
- 2010GaN and ZnO nanostructurescitations
Places of action
Organizations | Location | People |
---|
document
Beam damage of single semiconductor nanowires during X-ray nano beam diffraction experiments
Abstract
Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, we compare nXRD experiments carried out on individual semiconductor nanowires in their as grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the 3rd generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 10$^{10}$s$^{-1}$, the axial lattice parameter and tilt of individual GaAs/In$_{0.2}$Ga$_{0.8}$As/GaAs core-shell nanowires were monitored by continuously recording reciprocal space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology are studied by cathodoluminescence spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray induced ozone reactions in air. Due to the lower heat transfer coefficient compared to GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry....