People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wallentin, Jesper
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rayscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Ferroelectricity in Ultrathin HfO2-Based Films by Nanosecond Laser Annealingcitations
- 2023Beyond ray optics absorption of light in CsPbBr 3 perovskite nanowire arrays studied experimentally and with wave optics modellingcitations
- 2023Beyond ray optics absorption of light in CsPbBr3perovskite nanowire arrays studied experimentally and with wave optics modellingcitations
- 2022Perovskite-Compatible Electron-Beam-Lithography Process Based on Nonpolar Solvents for Single-Nanowire Devicescitations
- 2022Optical demonstration of crystallography and reciprocal space using laser diffraction from Au microdisc arrayscitations
- 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskitecitations
- 2022Single-Crystalline Perovskite Nanowire Arrays for Stable X-ray Scintillators with Micrometer Spatial Resolutioncitations
- 2022Free-Standing Metal Halide Perovskite Nanowire Arrays with Blue-Green Heterostructurescitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Vertically Aligned CsPbBr3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stabilitycitations
- 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffractioncitations
- 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffractioncitations
- 2017Simulated sample heating from a nanofocused X-ray beamcitations
- 2015Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowirecitations
- 2013Transparently Wrap-Gated Semiconductor Nanowire Arrays For Studies Of Gate-Controlled Photoluminescencecitations
- 2011Dynamics of extremely anisotropic etching of InP nanowires by HClcitations
- 2011Doping profile of InP nanowires directly imaged by photoemission electron microscopycitations
- 2010High Performance Single Nanowire Tunnel Diodes
Places of action
Organizations | Location | People |
---|
article
Simulated sample heating from a nanofocused X-ray beam
Abstract
Recent developments in synchrotron brilliance and X-ray optics are pushing the flux density in nanofocusing experiments to unprecedented levels, which increases the risk of different types of radiation damage. The effect of X-ray induced sample heating has been investigated using time-resolved and steady-state three-dimensional finite-element modelling of representative nanostructures. Simulations of a semiconductor nanowire indicate that the heat generated by X-ray absorption is efficiently transported within the nanowire, and that the temperature becomes homogeneous after about 5ns. The most important channel for heat loss is conduction to the substrate, where the heat transfer coefficient and the interfacial area are limiting the heat transport. While convective heat transfer to air is significant, the thermal radiation is negligible. The steady-state average temperature in the nanowire is 8K above room temperature at the reference parameters. In the absence of heat transfer to the substrate, the temperature increase at the same flux reaches 55K in air and far beyond the melting temperature in vacuum. Reducing the size of the X-ray focus at constant flux only increases the maximum temperature marginally. These results suggest that the key strategy for reducing the X-ray induced heating is to improve the heat transfer to the surrounding.Time-resolved finite-element modelling is used to study the sample heating from intense X-ray irradiation.