Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Clancy, Marie

  • Google
  • 1
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015In situ synchrotron X-ray diffraction investigation of the evolution of a PbO2/PbSO4 surface layer on a copper electrowinning Pb anode in a novel electrochemical flow cell13citations

Places of action

Chart of shared publication
Zhang, Yansheng
1 / 2 shared
Kimpton, Justin
1 / 3 shared
Bettles, Colleen
1 / 2 shared
Webster, Nathan
1 / 5 shared
Birbilis, Nick
1 / 16 shared
Styles, Mark
1 / 6 shared
Gu, Qinfen
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Zhang, Yansheng
  • Kimpton, Justin
  • Bettles, Colleen
  • Webster, Nathan
  • Birbilis, Nick
  • Styles, Mark
  • Gu, Qinfen
OrganizationsLocationPeople

article

In situ synchrotron X-ray diffraction investigation of the evolution of a PbO2/PbSO4 surface layer on a copper electrowinning Pb anode in a novel electrochemical flow cell

  • Zhang, Yansheng
  • Clancy, Marie
  • Kimpton, Justin
  • Bettles, Colleen
  • Webster, Nathan
  • Birbilis, Nick
  • Styles, Mark
  • Gu, Qinfen
Abstract

This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K. This is the first report of a truly in situ S-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. The in situ S-XRD results show that [beta]-PbO2 forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the [beta]-PbO2 to PbSO4 conversion decrease as the number of cycles increases, whilst the amount of residual PbO2 increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4 to [beta]-PbO2 was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4 to [beta]-PbO2 transformation.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • x-ray diffraction
  • copper
  • solvent extraction