People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahlburg, Jakob Voldum
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022In-depth investigations of size and occupancies in cobalt ferrite nanoparticles by joint Rietveld refinements of X-ray and neutron powder diffraction datacitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2021Synthesis and Characterization of a Magnetic Ceramic Using an Easily Accessible Scale Setupcitations
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe 2 O 4 spinel nanoparticles using in situ neutron diffractioncitations
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe2O4 spinel nanoparticles using in situ neutron diffractioncitations
- 2020Realising Sample Environments for X-ray and Neutron Powder Diffraction
- 2020Ultra-Fast Heating – Induction furnace for POLARIS
- 2019Novel fast heating furnaces for in situ powder neutron diffraction
- 2019Structure and magnetic properties of W-type hexaferritescitations
- 2019Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scattering
- 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compound
- 2019Air-heated solid–gas reaction setup for in situ neutron powder diffractioncitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Laboratory setup for rapid in situ powder X-ray diffraction elucidating Ni particle formation in supercritical methanolcitations
- 2018X-ray and neutron diffraction magnetostructural investigations on exchange-coupled nanocomposite magnets
- 2018Koercivitetsforbedring af strontium hexaferrit nano-krystallitter gennem morfologikontrolleret udglødning. ; Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealingcitations
- 2018Approaching Ferrite-Based Exchange-Coupled Nanocomposites as Permanent Magnetscitations
- 2018Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealingcitations
- 2017Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction.
- 2015Particle size optimization of SrFe12O19 magnetic nanoparticles
Places of action
Organizations | Location | People |
---|
article
In-depth investigations of size and occupancies in cobalt ferrite nanoparticles by joint Rietveld refinements of X-ray and neutron powder diffraction data
Abstract
Powder X-ray diffraction (PXRD) and neutron powder diffraction (NPD) have been used to investigate the crystal structure of CoFe2O4 nanoparticles prepared via different hydrothermal synthesis routes, with particular attention given to accurately determining the spinel inversion degrees. The study is divided into four parts. In the first part, the investigations focus on the influence of using different diffraction pattern combinations (NPD, Cu-source PXRD and Cosource PXRD) for the structural modelling. It is found that combining PXRD data from a Co source with NPD data offers a robust structural model. The second part of the study evaluates the reproducibility of the employed multipattern Rietveld refinement procedure using different data sets collected on the same sample, as well as on equivalently prepared samples. The refinement procedure gives reproducible results and reveals that the synthesis method is likewise reproducible since only minor differences are noted between the samples. The third part focuses on the structural consequences of (i) the employed heating rate (achieved using three different hydrothermal reactor types) and (ii) changing the cobalt salt in the precursors [aqueous salt solutions of Co(CH3COOH)(2), Co(NO3) (2) and CoCl2] in the synthesis. It is found that increasing the heating rate causes a change in the crystal structure (unit cell and crystallite sizes) while the Co/Fe occupancy and magnetic parameters remain similar in all cases. Also, changing the type of cobalt salt does not alter the final crystal/magnetic structure of the CoFe2O4 nanoparticles. The last part of this study is a consideration of the chemicals and parameters used in the synthesis of the different samples. All the presented samples exhibit a similar crystal and magnetic structure, with only minor deviations. It is also evident that the refinement method used played a key role in the description of the sample.