People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Henning, F.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 20243D microstructural and strain evolution during the early stages of tensile deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2023Exploring 4D microstructural evolution in a heavily deformed ferritic alloycitations
- 2023Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurementscitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022Multiscale Exploration of Texture and Microstructure Development in Recrystallization Annealing of Heavily Deformed Ferritic Alloyscitations
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 20224D microstructural evolution in a heavily deformed ferritic alloycitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2019Fast and quantitative 2D and 3D orientation mapping using Raman microscopycitations
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Ultra-low-angle boundary networks within recrystallizing grainscitations
- 2015Injection molded polymeric hard X-ray lensescitations
- 2014High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structurescitations
- 2012X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method
- 2011On the Use of Laguerre Tessellations for Representations of 3D Grain Structurescitations
- 2011Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffractioncitations
- 2011Three-Dimensional Orientation Mapping in the Transmission Electron Microscopecitations
- 2009Structured scintillators for X-ray imaging with micrometre resolutioncitations
- 2009New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imagingcitations
- 2009Measuring the elastic strain of individual grains in polycrystalline materials
- 2008A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillatorscitations
- 2004Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile samplecitations
- 2004Measurement of the components of plastic displacement gradients in three dimensionscitations
- 2004Metal Microstructures in Four Dimensions
- 20023DXRD microscopy - a comparison with neutron diffractioncitations
- 2000A high energy microscope for local strain measurements within bulk materials
Places of action
Organizations | Location | People |
---|
article
High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructures
Abstract
Three-dimensional X-ray diffraction microscopy, 3DXRD, has become an established tool for orientation and strain mapping of bulk polycrystals. However, it is limited to a finite spatial resolution of similar to 1.5-3 mm. Presented here is a high-resolution modality of the technique, HR-3DXRD, for 3D mapping of submicrometre-sized crystallites or subgrains with high spatial and angular resolution. Specifically, the method is targeted to visualization of metal microstructures at industrially relevant degrees of plastic deformation. Exploiting intrinsic crystallographic properties of such microstructures, the high resolution is obtained by placing a high-resolution imaging detector in between the near-field and far-field regimes. This configuration enables 3D mapping of deformation microstructure by determining the centre of mass and volume of the subgrains and generating maps by tessellation. The setup is presented, together with a data analysis approach. Full-scale simulations are used to determine limitations and to demonstrate HR-3DXRD on realistic phantoms. Misalignments in the setup are shown to cause negligible shifts in the position and orientation of the subgrains. Decreasing the signal-to-noise ratio is observed to lead primarily to a loss in the number of determined diffraction spots. Simulations of an alpha-Fe sample deformed to a strain of epsilon M-v = 0.3 and comprising 828 subgrains show that, despite the high degree of local texture, 772 of the subgrains are retrieved with a spatial accuracy of 0.1 mu m and an orientation accuracy of 0.0005 degrees.