People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Snow, Tim
Diamond Light Source
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2019An introduction to classical molecular dynamics simulation for experimental scattering userscitations
- 2016Structure of lipid multilayerscitations
- 2016Structure of lipid multilayers:Via drop casting of aqueous liposome dispersionscitations
Places of action
Organizations | Location | People |
---|
article
An introduction to classical molecular dynamics simulation for experimental scattering users
Abstract
Classical molecular dynamics simulations are a common component of multi-modal analyses of scattering measurements, such as small-angle scattering and diffraction. Users of these experimental techniques often have no formal training in the theory and practice of molecular dynamics simulation, leading to the possibility of these simulations being treated as a 'black box' analysis technique. This article describes an open educational resource (OER) designed to introduce classical molecular dynamics to users of scattering methods. This resource is available as a series of interactive web pages, which can be easily accessed by students, and as an open-source software repository, which can be freely copied, modified and redistributed by educators. The topics covered in this OER include classical atomistic modelling, parameterizing interatomic potentials, molecular dynamics simulations, typical sources of error and some of the approaches to using simulations in the analysis of scattering data.