People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnsen, Rune E.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2020Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-Mcitations
- 2019Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodescitations
- 2019Structure-performance relationships on Co based Fischer – Tropsch synthesis catalysts: The more defect free the bettercitations
- 2019Structure-performance relationships on Co based Fischer – Tropsch synthesis catalysts: The more defect free the bettercitations
- 2018Intercalation of lithium into disordered graphite in a working batterycitations
- 2016In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxidecitations
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studiescitations
- 2014In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell
- 2014Temperature- and Pressure-Induced Changes in the Crystal Structure of Sr(NH3)8Cl2citations
- 2013Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphitecitations
- 2013A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalystcitations
- 2012The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox propertiescitations
- 2010Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction studycitations
- 2009A Structural Study of Stacking Disorder in the Decomposition Oxide of MgAl Layered Double Hydroxide: A DIFFaX plus Analysiscitations
Places of action
Organizations | Location | People |
---|
article
Intercalation of lithium into disordered graphite in a working battery
Abstract
The structural transformations occurring during the intercalation of lithium into disordered graphite in a working battery were studied in detail by operando X-ray powder diffraction (XRPD). By using a capillary-based micro-battery cell, it was possible to study the stacking disorder in the initial graphite as well as in lithiated graphites. The micro-battery cell was assembled in its charged state with graphite as positive electrode and metallic lithium as counter electrode. The battery was discharged until a stage II compound (LiC12) was formed. The operando XRPD data reveal that the graphitic electrode material retains a disordered nature during the intercalation process. A DIFFaX+ refinement based on the initial operando XRPD pattern shows that the initial graphite generally has an intergrown structure with domains of graphite 2H and graphite 3R. However, the average stacking sequence of the initial graphite also contains a significant concentration of AA-type stacking of the graphene sheets. DIFFaX+ was further used to refine structure models of a stage III type compound and the final stage II compound. The refinement of the stage II compound showed that it is dominated by AαAAαA-type stacking, but that it also contains a significant concentration of AαABβB-type slabs in the average stacking sequence.