Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Daniel, R.

  • Google
  • 7
  • 37
  • 272

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modelling17citations
  • 2018Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis67citations
  • 2016Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae20citations
  • 2016Cross-sectional structure-property relationship in a graded nanocrystalline Ti1−xAlxN thin film36citations
  • 2016Cross-sectional structure-property relationship in a graded nanocrystalline $mathrm{Ti_{1−x}Al_{x}N}$ thin film36citations
  • 2010Structural characterization of a Cu/MgO(001) interface using C-S-corrected HRTEM26citations
  • 2008Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1 − xSixN thin films70citations

Places of action

Chart of shared publication
Keckes, J.
5 / 48 shared
Brandt, Lr
1 / 2 shared
Todt, J.
2 / 8 shared
Rosenthal, M.
1 / 7 shared
Mitterer, C.
3 / 20 shared
Salvati, E.
2 / 17 shared
Kopecek, J.
1 / 3 shared
Korsunsky, Am
2 / 46 shared
Zalesak, J.
3 / 5 shared
Hruby, H.
1 / 1 shared
Meindlhumer, M.
1 / 5 shared
Sebastiani, M.
1 / 18 shared
Bemporad, E.
1 / 20 shared
Sui, Tan
1 / 13 shared
Lunt, Alexander J. G.
1 / 31 shared
Mughal, Mz
1 / 2 shared
Sartory, B.
1 / 6 shared
Zalesak, Jakub
1 / 14 shared
Burghammer, M.
1 / 37 shared
Koepf, A.
1 / 1 shared
Weissenbacher, R.
1 / 1 shared
Pitonak, R.
1 / 6 shared
Mayrhofer, P. H.
2 / 24 shared
Krywka, C.
2 / 8 shared
Kiener, D.
2 / 12 shared
Bartosik, M.
2 / 6 shared
Zhang, Z. L.
1 / 3 shared
Dehm, G.
1 / 29 shared
Gall, D.
1 / 4 shared
Cazottes, Sophie
1 / 20 shared
Chawla, J. S.
1 / 1 shared
Karlsson, L.
1 / 11 shared
Sjölén, J.
1 / 1 shared
Hultman, Lars
1 / 179 shared
Alling, Björn
1 / 50 shared
Flink, Axel
1 / 8 shared
Andersson, J. M.
1 / 8 shared
Chart of publication period
2021
2018
2016
2010
2008

Co-Authors (by relevance)

  • Keckes, J.
  • Brandt, Lr
  • Todt, J.
  • Rosenthal, M.
  • Mitterer, C.
  • Salvati, E.
  • Kopecek, J.
  • Korsunsky, Am
  • Zalesak, J.
  • Hruby, H.
  • Meindlhumer, M.
  • Sebastiani, M.
  • Bemporad, E.
  • Sui, Tan
  • Lunt, Alexander J. G.
  • Mughal, Mz
  • Sartory, B.
  • Zalesak, Jakub
  • Burghammer, M.
  • Koepf, A.
  • Weissenbacher, R.
  • Pitonak, R.
  • Mayrhofer, P. H.
  • Krywka, C.
  • Kiener, D.
  • Bartosik, M.
  • Zhang, Z. L.
  • Dehm, G.
  • Gall, D.
  • Cazottes, Sophie
  • Chawla, J. S.
  • Karlsson, L.
  • Sjölén, J.
  • Hultman, Lars
  • Alling, Björn
  • Flink, Axel
  • Andersson, J. M.
OrganizationsLocationPeople

article

Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae

  • Keckes, J.
  • Todt, J.
  • Sartory, B.
  • Daniel, R.
  • Zalesak, Jakub
  • Burghammer, M.
  • Koepf, A.
  • Weissenbacher, R.
  • Pitonak, R.
Abstract

International audience ; Because of the tremendous variability of crystallite sizes and shapes in nanomaterials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self-organized hexagonal-cubic and cubic-cubic nanolamellae with varying compositions and thicknesses in the range of similar to 3-15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl3/TiCl4 precursor ratio of similar to 1.9, resulting in the formation of an optimized lamellar microstructure with similar to 1.3 nm thick cubic Ti(Al)N and similar to 12 nm thick cubic Al(Ti) N nanolamellae which exhibits a maximal hardness of similar to 36 GPa and an indentation modulus of similar to 522 GPa. The presented approach of an iterative nanoscale search based on the application of cross-sectional synchrotron X-ray nanodiffraction and cross-sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of deposition conditions, while identifying those that result in the formation of a particular microstructure with optimized functional attributes

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • thin film
  • reactive
  • hardness
  • nanoindentation
  • electron microscopy