People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bahri, Mounib
University of Liverpool
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2024Radiation Effects in Uranium Nitride and Zirconium Nitride
- 2024Superionic lithium transport via multiple coordination environments defined by two-anion packingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2022MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Componentscitations
- 2022A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrodecitations
- 2021An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)citations
- 2020Zinc-blende group III-V/group IV epitaxy: Importance of the miscutcitations
- 2020Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reactioncitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Kinked silicon nanowires: Superstructures by metal assisted chemical etchingcitations
- 2019Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etchingcitations
- 2019Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10 5 S cm −1 and Thermoelectric Power Factors of 2 mW m −1 K −2citations
- 2016Thermal Management of Monolithic Versus Heterogeneous Lasers Integrated on Siliconcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
Places of action
Organizations | Location | People |
---|
article
Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setup
Abstract
This study is carried out in the context of III–V semiconductor monolithic integration on silicon for optoelectronic device applications. X-ray diffraction is combined with atomic force microscopy and scanning transmission electron microscopy for structural characterization of GaP nanolayers grown on Si. GaP has been chosen as the interfacial layer, owing to its low lattice mismatch with Si. But, microtwins and antiphase boundaries are still difficult to avoid in this system. Absolute quantification of the microtwin volume fraction is used for optimization of the growth procedure in order to eliminate these defects. Lateral correlation lengths associated with mean antiphase boundary distances are then evaluated. Finally, optimized growth conditions lead to the annihilation of antiphase domains within the first 10 nm.