People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brück, Ekkes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2019Self healing of creep damage in iron-based alloys by supersaturated tungstencitations
- 2018Analysis of the grain size evolution for ferrite formation in Fe-C-Mn steels using a 3D model under a mixed-mode interface conditioncitations
- 2018Cold working consequence on the magnetocaloric effect of Ni50Mn34In16 Heusler alloycitations
- 2014High-resolution X-ray diffraction investigation on the evolution of the substructure of individual austenite grains in TRIP steels during tensile deformationcitations
- 2014Position-dependent shear-induced austenite–martensite transformation in double-notched TRIP and dual-phase steel samplescitations
- 2014Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samplescitations
- 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loadingcitations
- 2005Contribution to the Understanding of Austenite Stability in a 12Cr-9Ni-4Mo Maraging Steelcitations
Places of action
Organizations | Location | People |
---|
article
High-resolution X-ray diffraction investigation on the evolution of the substructure of individual austenite grains in TRIP steels during tensile deformation
Abstract
<p>The martensitic transformation behaviour of the metastable austenite phase in low-alloyed transformation-induced plasticity (TRIP) steels has been studied in situ using high-energy X-ray diffraction during deformation. The austenite stability during tensile deformation has been evaluated at different length scales. A powder diffraction analysis has been performed to correlate the macroscopic behaviour of the material to the observed changes in the volume phase fraction. Moreover, the austenite deformation response has been studied at the length scale of individual grains, where an in-depth characterization of four selected grains has been performed, including grain volume, local carbon concentration and grain orientation. For the first time, a high-resolution far-field detector was used to study the initial and evolving structure of individual austenite grains during uniaxial tensile deformation. It was found that the austenite subgrain size does not change significantly during tensile deformation. Most austenite grains show a complete martensitic transformation in a single loading step.</p>