People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olsen, Ulrik Lund
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 2018Spectral correction algorithm for multispectral CdTe x-ray detectorscitations
- 2009Structured scintillators for X-ray imaging with micrometre resolutioncitations
- 2008A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillatorscitations
Places of action
Organizations | Location | People |
---|
article
A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillators
Abstract
A three-dimensional X-ray detector for imaging 30-200 keV photons is described. It comprises a set of semi-transparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically and explored in detail through simulations. Based on available hardware, a spatial resolution of 1 mm is obtainable. The resolution of a single screen is shown to be determined only by the pitch, at least up to 100 keV. In comparison with conventional homogeneous screens, an improvement in efficiency by a factor of 5-15 is obtainable. The cross-talk between screens in the three-dimensional detector is shown to be negligible. The three-dimensional concept enables ray-tracing and super-resolution algorithms to be applied.