People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Florence, Alastair
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Machine learning derived correlations for scale-up and technology transfer of primary nucleation kineticscitations
- 2021Heat transfer and residence time distribution in plug flow continuous oscillatory baffled crystalliserscitations
- 2019Use of terahertz-Raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusioncitations
- 2019Developing mechanistic understanding of unconventional growth in pharmaceutical crystals using scanning electron microscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry
- 2018Enabling precision manufacturing of active pharmaceutical ingredientscitations
- 2017Solid oral dosage form manufacturing using injection moulding
- 2013A complementary experimental and computational study of loxapine succinate and its monohydratecitations
- 2013Chemical transformations of a crystalline coordination polymercitations
- 2012Polymer templating of supercooled indomethacin for polymorph selectioncitations
- 2011Different structural destinations: comparing reactions of [CuBr2(3-Brpy)(2)] crystals with HBr and HCl gascitations
- 2008A catemer-to-dimer structural transformation in cyheptamidecitations
Places of action
Organizations | Location | People |
---|
article
A complementary experimental and computational study of loxapine succinate and its monohydrate
Abstract
The crystal structures of loxapine succinate [systematic name: 4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium 3-carboxypropanoate], C18H19ClN3O+center dot C4H5O4-, and loxapine succinate monohydrate systematic name: bis[4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin- 1-ium] succinate succinic acid dihydrate, 2C(18)H(19)ClN(3)O(+)center dot C4H4O42-center dot C4H6O4 center dot 2H(2)O, have been determined using X-ray powder diffraction and single-crystal X-ray diffraction, respectively. Fixed cell geometry optimization calculations using density functional theory confirmed that the global optimum powder diffraction derived structure also matches an energy minimum structure. The energy calculations proved to be an effective tool in locating the positions of the H atoms reliably and verifying the salt configuration of the structure determined from powder data. Crystal packing analysis of these structures revealed that the loxapine succinate structure is based on chains of protonated loxapine molecules while the monohydrate contains dispersion stabilized centrosymmetric dimers. Incorporation of water molecules within the crystal lattice significantly alters the molecular packing and protonation state of the succinic acid.