Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dijk, N. H. Van

  • Google
  • 9
  • 29
  • 215

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading49citations
  • 2013Multi length scale characterization of austenite in TRIP steels using high-energy X-ray diffraction3citations
  • 2013Time-dependent synchrotron X-ray diffraction on the austenite decomposition kinetics in SAE 52100 bearing steel at elevated temperatures under tensile stress36citations
  • 2012Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields13citations
  • 2011Microstructural control of the austenite stability in low-alloyed TRIP steels4citations
  • 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fields46citations
  • 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fields46citations
  • 2008Evolution of ferromagnetic order in URhGe alloyed with Ru, Co and Si18citations
  • 2004Critical scattering of polarized neutrons in the invar FE65Ni35 alloycitations

Places of action

Chart of shared publication
Blondé, R.
4 / 8 shared
Wright, J. P.
2 / 13 shared
Zhao, L.
3 / 36 shared
Zwaag, S. Van Der
6 / 35 shared
Jimenez-Melero, Enrique
6 / 58 shared
Brück, E.
3 / 14 shared
Sherif, M. Y.
1 / 2 shared
Honkimäki, V.
2 / 7 shared
Duffy, Jonathan A.
1 / 1 shared
Martin, D. San
1 / 1 shared
Sietsma, J.
1 / 96 shared
Zeitler, U.
2 / 8 shared
Martin, D.
1 / 11 shared
Kampert, E.
2 / 5 shared
Jiménez-Melero, E.
1 / 1 shared
San-Martín, D.
1 / 23 shared
Gortenmulder, T. J.
1 / 1 shared
De Visser, Anne
1 / 12 shared
Löhneysen, H. V.
1 / 7 shared
Wagemaker, M.
1 / 3 shared
Uhlarz, M.
1 / 12 shared
Moleman, A. C.
1 / 1 shared
Sakarya, S.
1 / 1 shared
Huy, N. T.
1 / 2 shared
Klaasse, J. C. P.
1 / 3 shared
Grigoriev, S. V.
1 / 18 shared
Okorokov, A. I.
1 / 8 shared
Maleyev, S. V.
1 / 4 shared
Eckerlebe, H.
1 / 28 shared
Chart of publication period
2014
2013
2012
2011
2010
2008
2004

Co-Authors (by relevance)

  • Blondé, R.
  • Wright, J. P.
  • Zhao, L.
  • Zwaag, S. Van Der
  • Jimenez-Melero, Enrique
  • Brück, E.
  • Sherif, M. Y.
  • Honkimäki, V.
  • Duffy, Jonathan A.
  • Martin, D. San
  • Sietsma, J.
  • Zeitler, U.
  • Martin, D.
  • Kampert, E.
  • Jiménez-Melero, E.
  • San-Martín, D.
  • Gortenmulder, T. J.
  • De Visser, Anne
  • Löhneysen, H. V.
  • Wagemaker, M.
  • Uhlarz, M.
  • Moleman, A. C.
  • Sakarya, S.
  • Huy, N. T.
  • Klaasse, J. C. P.
  • Grigoriev, S. V.
  • Okorokov, A. I.
  • Maleyev, S. V.
  • Eckerlebe, H.
OrganizationsLocationPeople

article

Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields

  • Honkimäki, V.
  • Zwaag, S. Van Der
  • Duffy, Jonathan A.
  • Jimenez-Melero, Enrique
  • Dijk, N. H. Van
  • Martin, D. San
Abstract

<p>The isothermal austenite-to-martensite transformation kinetics in a maraging steel have been studied by time-dependent microbeam diffraction measurements with high-energy X-rays. The transformation kinetics are shown to be accelerated significantly when a magnetic field of 8 T is applied. The average phase behaviour, obtained from a Rietveld refinement of the powder-averaged diffraction data, demonstrates that the martensite formation does not lead to a macroscopic strain in the austenite and martensite phases. An analysis of individual austenite reflections in the microbeam diffraction patterns, however, indicates that within the transforming austenite grains a transformation strain develops as a result of the formed martensite. The development of elastic strains during the transformation is explained by a partial strain confinement within the untransformed part of the austenite grain. The strain relaxation to the surrounding austenite grains is found to be dependent on the austenite volume. For a set of individual austenite grains the martensite nucleation is correlated with the initial austenite volume and the strain developed prior to the transformation as a result of martensite formation in the neighbouring grains.</p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • x-ray diffraction
  • steel