People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jimenez-Melero, Enrique
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (58/58 displayed)
- 2024Impact of Electron Beam Welding on the Microstructure of PM2000 ODS Steelcitations
- 2024Depth-resolved mechanical behaviour of shot peened 7050-T7451 aluminium surfaces using in-situ synchrotron X-ray diffractioncitations
- 2023Additive friction stir processing and hybrid metal additive manufacturing of high melting point materials: A reviewcitations
- 2023Delayed surface degradation in W-Ta alloys at 400°C under high-fluence 40 eV He plasma exposurecitations
- 2023Environmental effects of a simulated AGR coolant on oxidation and carburization behavior of type 316H stainless steel
- 2022Formation of lower bainite in a high carbon steelcitations
- 2022Full-stage precipitation during aging of Cu-0.55Cr-0.07Zr alloy for high heat flux fusion reactor technologycitations
- 2022Creep deformation phenomena in near-surface carburised layers of 316H stainless steels
- 2022Creep performance of carburized 316H stainless steel at 550°Ccitations
- 2022Formation of lower bainite in a high carbon steel – an in-situ synchrotron XRD studycitations
- 2021In-situ synchrotron X-ray diffraction during quenching and tempering of SAE 52100 steelcitations
- 2021Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °Ccitations
- 2020Comparative micromechanics assessment of high-carbon martensite/bainite bearing steel microstructures using in-situ synchrotron X-ray diffractioncitations
- 2020Wear rate at RT and 100oC and operating temperature range of microalloyed Cu50Zr50 shape memory alloycitations
- 2019Local chemical instabilities in 20Cr-25Ni Nb-stabilised austenitic stainless steel induced by proton irradiationcitations
- 2019Evolution of radiation-induced lattice defects in 20/25 Nb-stabilised austenitic stainless steel during in-situ proton irradiationcitations
- 2019Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steelcitations
- 2018Characterization of ODS steel friction stir welds and their abnormal grain growth behaviourcitations
- 2018Characterization of ODS steel friction stir welds and their abnormal grain growth behaviourcitations
- 2018Work hardening behaviour in banded dual phase steel structures with improved formabilitycitations
- 2018Isothermal annealing behaviour of nuclear grade 20Cr-25Ni austenitic stainless steelcitations
- 2018Diffusion of hydrogen into and through γ-iron by density functional theorycitations
- 2017Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steelcitations
- 2017Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalumcitations
- 2017Residual stress distribution in friction stir welded ODS steel measured by neutron diffractioncitations
- 2017Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiationcitations
- 2017Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiationcitations
- 2017Impact of friction stir welding on the microstructure of ODS steelcitations
- 2017Dataset concerning the analytical approximation of the Ae3 temperaturecitations
- 2017Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperaturescitations
- 2016Study of the interplay between banding and the work hardening behaviour in a dual phase steel with improved formability
- 2016In situ study of austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel
- 2016The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steelcitations
- 2016Dataset concerning the analytical approximation of the Ae3 temperaturecitations
- 2016Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principlescitations
- 2015On the role of aluminium in segregation and banding in multiphase steel
- 2014High-resolution X-ray diffraction investigation on the evolution of the substructure of individual austenite grains in TRIP steels during tensile deformationcitations
- 2014Position-dependent shear-induced austenite–martensite transformation in double-notched TRIP and dual-phase steel samplescitations
- 2014Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samplescitations
- 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loadingcitations
- 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loadingcitations
- 2014The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loadingcitations
- 2014The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loadingcitations
- 2013Multi length scale characterization of austenite in TRIP steels using high-energy X-ray diffractioncitations
- 2013Time-dependent synchrotron X-ray diffraction on the austenite decomposition kinetics in SAE 52100 bearing steel at elevated temperatures under tensile stresscitations
- 2012Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fieldscitations
- 2012Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fieldscitations
- 2011Microstructural control of the austenite stability in low-alloyed TRIP steelscitations
- 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fieldscitations
- 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fieldscitations
- 2007A novel 2D analysis method to characterize individual grains using high-energy X-ray microbeam diffraction
- 2007A novel 2D analysis method to characterize individual grains using high-energy X-ray microbeam diffraction
- 2006Neutron powder diffraction study on Nd2BaCuO5 oxidecitations
- 2006Neutron powder diffraction study on Nd2BaCuO5 oxidecitations
- 2002Magnetic behaviour of ErCrO4 oxidecitations
- 2002Magnetic behavior of ErCrO4 oxidecitations
- 2001Structural and magnetic characterization of zircon-type PrCrO4 oxidecitations
- 2000Synthesis, structural characterization and magnetic properties of RCrO4 oxides, R = Nd, Sm, Eu and Lucitations
Places of action
Organizations | Location | People |
---|
article
Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields
Abstract
<p>The isothermal austenite-to-martensite transformation kinetics in a maraging steel have been studied by time-dependent microbeam diffraction measurements with high-energy X-rays. The transformation kinetics are shown to be accelerated significantly when a magnetic field of 8 T is applied. The average phase behaviour, obtained from a Rietveld refinement of the powder-averaged diffraction data, demonstrates that the martensite formation does not lead to a macroscopic strain in the austenite and martensite phases. An analysis of individual austenite reflections in the microbeam diffraction patterns, however, indicates that within the transforming austenite grains a transformation strain develops as a result of the formed martensite. The development of elastic strains during the transformation is explained by a partial strain confinement within the untransformed part of the austenite grain. The strain relaxation to the surrounding austenite grains is found to be dependent on the austenite volume. For a set of individual austenite grains the martensite nucleation is correlated with the initial austenite volume and the strain developed prior to the transformation as a result of martensite formation in the neighbouring grains.</p>