Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neale, J. W.

  • Google
  • 1
  • 12
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Thermoelastic properties of magnesiowüstite, (Mg1−xFex)O: determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures17citations

Places of action

Chart of shared publication
Stone, H. J.
1 / 28 shared
Fortes, A. D.
1 / 2 shared
Marshall, W. G.
1 / 5 shared
Dobson, David P.
1 / 6 shared
Cooper, Frances
1 / 1 shared
Wood, Ian G.
1 / 6 shared
Francis, D. J.
1 / 1 shared
Mccannon, C. A.
1 / 1 shared
Tucker, M. G.
1 / 3 shared
Walker, A. M.
1 / 2 shared
Vocadlo, Lidunka
1 / 3 shared
Price, G. David
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Stone, H. J.
  • Fortes, A. D.
  • Marshall, W. G.
  • Dobson, David P.
  • Cooper, Frances
  • Wood, Ian G.
  • Francis, D. J.
  • Mccannon, C. A.
  • Tucker, M. G.
  • Walker, A. M.
  • Vocadlo, Lidunka
  • Price, G. David
OrganizationsLocationPeople

article

Thermoelastic properties of magnesiowüstite, (Mg1−xFex)O: determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures

  • Stone, H. J.
  • Fortes, A. D.
  • Marshall, W. G.
  • Dobson, David P.
  • Cooper, Frances
  • Wood, Ian G.
  • Francis, D. J.
  • Mccannon, C. A.
  • Tucker, M. G.
  • Walker, A. M.
  • Vocadlo, Lidunka
  • Neale, J. W.
  • Price, G. David
Abstract

<p>The ability to perform neutron diffraction studies at simultaneous high pressures<br/> and high temperatures is a relatively recent development. The suitability of this<br/> technique for determining P–V–T equations of state has been investigated by<br/> measuring the lattice parameters of Mg<sub>1-x</sub>Fe<sub>x</sub>O (x = 0.2, 0.3, 0.4), in the range<br/> P &lt; 10.3 GPa and 300 &lt; T &lt; 986 K, by time-of-flight neutron powder diffraction.<br/> Pressures were determined using metallic Fe as a marker and temperatures were<br/> measured by neutron absorption resonance radiography. Within the resolution<br/> of the experiment, no evidence was found for any change in the temperature<br/> derivative of the isothermal incompressibility, ∂KT/∂T, with composition. By<br/> assuming that the equation-of-state parameters either varied linearly or were<br/> invariant with composition, the 60 measured state points were fitted<br/> simultaneously to a P–V–T–x equation of state, leading to values of ∂KT/∂T =-0.024 (9) GPa K<sup>-1</sup> and of the isothermal Anderson–Grüneisen parameter ∂<sub>T</sub> =<br/> 4.0 (16) at 300 K. Two designs of simultaneous high-P/T cell were employed<br/> during this study. It appears that, by virtue of its extended pressure range, a<br/> design using toroidal gaskets is more suitable for equation-of-state studies than<br/> is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley,<br/> Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker &amp; Welch<br/> [Mineral. Mag. (2001), 65, 737–748].</p>

Topics
  • impedance spectroscopy
  • mineral
  • experiment
  • neutron diffraction