Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Albertini, Valerio Rossi

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Small-angle energy-dispersive X-ray scattering using a laboratory-based diffractometer with a conventional source6citations

Places of action

Chart of shared publication
Caminiti, Ruggero
1 / 3 shared
Dilario, Lucio
1 / 4 shared
Martinelli, Andrea
1 / 7 shared
Longo, Alessandro
1 / 20 shared
Portale, Giuseppe, A.
1 / 57 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Caminiti, Ruggero
  • Dilario, Lucio
  • Martinelli, Andrea
  • Longo, Alessandro
  • Portale, Giuseppe, A.
OrganizationsLocationPeople

article

Small-angle energy-dispersive X-ray scattering using a laboratory-based diffractometer with a conventional source

  • Caminiti, Ruggero
  • Dilario, Lucio
  • Martinelli, Andrea
  • Longo, Alessandro
  • Albertini, Valerio Rossi
  • Portale, Giuseppe, A.
Abstract

<p>The use of polychromatic Bremsstrahlung X-rays generated by commercial tubes for energy-dispersive small-angle scattering measurements has not been extensively discussed in the literature, mainly because of some difficulties associated with it. If a suitable experimental setup is chosen and concomitant phenomena are taken into account for correcting the observed X-ray patterns, energy-dispersive small-angle X-ray scattering (SAXS) may become an interesting alternative to conventional measurements based on monochromatic beams. Energy-dispersive SAXS experiments carried out on protein solutions, micelles, semicrystalline polymers and catalytic systems are discussed to illustrate the new opportunities offered by this technique as well as its limitations.</p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • small angle x-ray scattering
  • semicrystalline