People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirby, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Structure, morphology and annealing behavior of ion tracks in polycarbonatecitations
- 2016Quantitative analysis of quench sensitivity of 7xxx alloys by using small angle X-ray scattering
- 2013Tracks and voids in amorphous Ge induced by swift heavy-ion irradiationcitations
- 2012Morphology of swift heavy ion tracks in metallic glassescitations
- 2012Morphology of swift heavy ion tracks in metallic glassescitations
- 2012Modification of Fe-B based metallic glasses using swift heavy ions
- 2010Ion-irradiation-induced amorphization of cobalt nanoparticlescitations
- 2009Dietary iron-loaded rat liver haemosiderin and ferritin : in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scatteringcitations
- 2007Iron K-edge anomalous small-angle X-ray scattering at 15-ID-D at the Advanced Photon Sourcecitations
Places of action
Organizations | Location | People |
---|
article
Iron K-edge anomalous small-angle X-ray scattering at 15-ID-D at the Advanced Photon Source
Abstract
Small-angle X-ray scattering (SAXS) is an ideal technique for characterizing inorganic nanoparticles in biological specimens large enough to be representative of tissues. As tissues consist of complex mixtures of structures, identifying particular structural features from single-wavelength scattering data can be problematic. Synchrotron SAXS can supply element-specific structural information in complex samples, using anomalous scattering close to absorption edges. Anomalous dispersion is a secondary effect that produces relatively subtle changes in scattering patterns. In order to utilize this effect for anomalous SAXS analysis, stringent control of instrument performance is required. This work outlines the development of high-quality data collection and processing strategies for Fe K-edge anomalous SAXS on the ChemMatCARS beamline at the Advanced Photon Source (APS), Chicago, with an emphasis on intensity normalization. The methods reported here were developed during a study of iron-loaded mammal tissues, but could equally well be applied to other complex specimens.