People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dyre, Jeppe C.
Roskilde University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Estimating melting curves for Cu and Al from simulations at a single state pointcitations
- 2022Rheological model for the alpha relaxation of glass-forming liquids and its comparison to data for DC704 and DC705citations
- 2021Does mesoscopic elasticity control viscous slowing down in glassforming liquids?citations
- 2021Effectively one-dimensional phase diagram of CuZr liquids and glassescitations
- 2021Generalized hydrodynamics of the Lennard-Jones liquid in view of hidden scale invariancecitations
- 2021Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanolcitations
- 2019Crystallization Instability in Glass-Forming Mixturescitations
- 2018ROSE bitumencitations
- 2017Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane datacitations
- 2017Connection between fragility, mean-squared displacement and shear modulus in two van der Waals bonded glass-forming liquidscitations
- 2016Freezing and melting line invariants of the Lennard-Jones systemcitations
- 2015Communication: Direct tests of single-parameter agingcitations
- 2015A review of experiments testing the shoving modelcitations
- 2013Four-component united-atom model of bitumencitations
- 2013Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducerscitations
- 2013Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scatteringcitations
- 2012‘‘Cooling by Heating’’- Demonstrating the Significance of the Longitudinal Specific Heatcitations
- 2007Hopping models for ion conduction in noncrystals
- 2006Elastic models for the non-Arrhenius viscosity of glass-forming liquidscitations
- 2004Glasses
- 2003Is there a "native" bandgap in ion conducting glasses?
- 2001Time-temperature superposition in viscous liquids
Places of action
Organizations | Location | People |
---|
article
Crystallization Instability in Glass-Forming Mixtures
Abstract
Understanding the mechanisms by which crystal nuclei form is crucial for many phenomena such as gaining control over crystallization in glass-forming materials or accurately modeling rheological behavior of magma flows. The microscopic nature of such nuclei, however, makes their understanding extremely hard in experiments, while computer simulations have hitherto been hampered by short timescales and small system sizes. Here we use highly efficient graphics processing unit simulation techniques to address these challenges. The larger systems we access reveal a general nucleation mechanism in mixtures. In particular, we find that the supercooled liquid of a prized atomistic model glass former (Kob-Andersen model) is inherently unstable to crystallization, i.e., that nucleation is unavoidable on the structural relaxation timescale, for system sizes of 10 000 particles and larger. This is due to compositional fluctuations leading to regions composed of one species that are larger than the critical nucleus of that species, which rapidly crystallize. We argue that this mechanism provides a minimum rate of nucleation in mixtures in general, and show that the same mechanism pertains to the metallic glass former copper zirconium (CuZr).