People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borgh, Magnus O.
University of East Anglia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Composite cores of monopoles and Alice rings in spin-2 Bose-Einstein condensates
- 2024Topological interfaces crossed by defects and textures of continuous and discrete point group symmetries in spin-2 Bose-Einstein condensatescitations
- 2022Topological superfluid defects with discrete point group symmetriescitations
- 2013Topological interface physics of defects and textures in spinor Bose-Einstein condensatescitations
Places of action
Organizations | Location | People |
---|
article
Topological interfaces crossed by defects and textures of continuous and discrete point group symmetries in spin-2 Bose-Einstein condensates
Abstract
We systematically and analytically construct a set of spinor wave functions representing defects and textures that continuously penetrate interfaces between coexisting, topologically distinct magnetic phases in a spin-2 Bose-Einstein condensate. These include singular and nonsingular vortices carrying mass or spin circulation that connect across interfaces between biaxial- and uniaxial nematic, cyclic and ferromagnetic phases, as well as vortices terminating as monopoles on the interface ("boojums"). The biaxial-nematic and cyclic phases exhibit discrete polytope symmetries featuring non-Abelian vortices and we investigate a pair of non-commuting line defects within the context of a topological interface. By numerical simulations, we characterize the emergence of non-trivial defect core structures, including the formation of composite defects. Our results demonstrate the potential of spin-2 Bose-Einstein condensates as experimentally accessible platforms for exploring interface physics, offering a wealth of combinations of continuous and discrete symmetries.