Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bette, S.

  • Google
  • 4
  • 44
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Microstructural Insights into the Transformation of Cubic, Low-Temperature, Disordered Cu2ZnSnS4 into the Tetragonal Form3citations
  • 2022Competing spin-orbital singlet states in the 4d 4 honeycomb ruthenate Ag 3 LiRu 2 O 610citations
  • 2022Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O610citations
  • 2015Real-Time Imaging System using a 12-MHz Forward-Looking Catheter with Single Chip CMUT-on-CMOS Array16citations

Places of action

Chart of shared publication
Dinnebier, Robert E.
1 / 6 shared
Schulz, A.
1 / 11 shared
Scardi, P.
1 / 10 shared
Isotta, E.
1 / 3 shared
Mukherjee, B.
1 / 2 shared
Kolb, U.
1 / 21 shared
Dallos, Z.
1 / 1 shared
Xu, T.
1 / 6 shared
Carpenter, Tm
1 / 2 shared
Freear, S.
1 / 6 shared
Schnakenberg, U.
1 / 4 shared
Kocaturk, O.
1 / 2 shared
Tekes, C.
1 / 1 shared
Degertekin, Fl
1 / 1 shared
Cowell, D.
1 / 1 shared
Lederman, Rj
1 / 1 shared
Chart of publication period
2024
2022
2015

Co-Authors (by relevance)

  • Dinnebier, Robert E.
  • Schulz, A.
  • Scardi, P.
  • Isotta, E.
  • Mukherjee, B.
  • Kolb, U.
  • Dallos, Z.
  • Xu, T.
  • Carpenter, Tm
  • Freear, S.
  • Schnakenberg, U.
  • Kocaturk, O.
  • Tekes, C.
  • Degertekin, Fl
  • Cowell, D.
  • Lederman, Rj
OrganizationsLocationPeople

article

Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O6

  • Dinnebier, R.
  • Bull, C. L.
  • Bewley, R.
  • Takagi, H.
  • Takayama, T.
  • Larkin, T. I.
  • Bette, S.
  • Boris, A. V.
  • Rabinovich, K. S.
  • Kitagawa, K.
  • Sari, D. P.
  • Watanabe, I.
  • Ishii, H.
  • Mcnally, G.
  • Haskel, D.
  • Yaresko, A. N.
  • Fabbris, G.
  • Bertinshaw, J.
  • Bogdanov, N. A.
  • Krajewska, A.
  • Blankenhorn, M.
  • Keimer, B.
  • Gibbs, Alexandra S.
  • Matsumoto, Y.
  • Yamaoka, H.
  • Irifune, T.
  • Bi, W.
  • Ridley, C. J.
Abstract

When spin-orbit-entangled <i>d </i>electrons reside on a honeycomb lattice, rich quantum states are anticipated to emerge, as exemplified by the <i>d</i><sup>5</sup> Kitaev materials. Distinct yet equally intriguing physics may be realized with a <i>d</i>-electron count other than <i>d</i><sup>5</sup>. The magnetization, <sup>7</sup>Li-nuclear magnetic resonance (NMR), and inelastic neutron scattering measurements, together with the quantum chemistry calculation, indicate that the layered ruthenate Ag<sub>3</sub>LiRu<sub>2</sub>O<sub>6</sub> with <i>d</i><sup>4</sup>Ru<sup>4+</sup> ions at ambient pressure forms a honeycomb lattice of spin-orbit-entangled singlets, which is a playground for frustrated excitonic magnetism. Under pressure, the singlet state does not develop the expected excitonic magnetism, but two successive transitions to other nonmagnetic phases were found in <sup>7</sup>Li-NMR, neutron diffraction, and x-ray absorption fine structure measurements, first to an intermediate phase with moderate distortion of honeycomb lattice and eventually to a high-pressure phase with very short Ru-Ru dimer bonds. While the strong dimerization in the high-pressure phase originates from a molecular orbital formation as in the sister compound Li<sub>2</sub>RuO<sub>3</sub>, we argue that the intermediate phase represents a spin-orbit-coupled singlet dimer state which is stabilized by the admixture of upper-lying <i>J</i><sub>eff</sub>=1-derived states via a pseudo-Jahn-Teller effect. The emergence of competing electronic phases demonstrates rich spin-orbital physics of <i>d</i><sup>4</sup> honeycomb compounds, and this finding paves the way for realization of unconventional magnetism.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • x-ray diffraction
  • layered
  • neutron diffraction
  • Nuclear Magnetic Resonance spectroscopy
  • magnetization
  • Inelastic neutron scattering