Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cox, Joel D.

  • Google
  • 15
  • 37
  • 170

University of Southern Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold films6citations
  • 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold films6citations
  • 2024Nonlocal effects in plasmon-emitter interactions12citations
  • 2023Nonlinear Plasmonics in Nanostructured Phosphorene2citations
  • 2023Nonlinear Plasmonics in Nanostructured Phosphorene2citations
  • 2023Photoluminescence from Ultrathin Monocrystalline Gold Flakescitations
  • 2023Photoluminescence from Ultrathin Monocrystalline Gold Flakescitations
  • 2021Nonlinear plasmonic response in atomically thin metal films8citations
  • 2021Nonlinear plasmonic response in atomically thin metal films8citations
  • 2021Anisotropic second-harmonic generation from monocrystalline gold flakes11citations
  • 2021Anisotropic second-harmonic generation from monocrystalline gold flakes11citations
  • 2020Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems16citations
  • 2020Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems16citations
  • 2019Quantum effects in the acoustic plasmons of atomically thin heterostructures36citations
  • 2019Quantum effects in the acoustic plasmons of atomically thin heterostructures36citations

Places of action

Chart of shared publication
Bowman, Alan R.
2 / 9 shared
Abajo, F. Javier García De
5 / 6 shared
Tagliabue, Giulia
2 / 6 shared
Tsoulos, Ted V.
2 / 2 shared
Iyikanat, Fadil
4 / 4 shared
Sundararaman, Ravishankar
2 / 6 shared
Echarri, Alvaro Rodríguez
1 / 1 shared
Kiani, Fatemeh
2 / 5 shared
Rodríguez Echarri, Alvaro
1 / 1 shared
García De Abajo, F. Javier
1 / 5 shared
Tserkezis, Christos
1 / 3 shared
Eriksen, Mikkel Have
1 / 1 shared
Mortensen, N. Asger
3 / 30 shared
Jelver, Line
1 / 2 shared
Echarri, A. Rodriguez
1 / 3 shared
Tagliabue, G.
2 / 4 shared
Abajo, F. Javier Garcia De
1 / 2 shared
Tsoulos, T. V.
2 / 2 shared
Bowman, A. R.
2 / 3 shared
Kiani, F.
2 / 2 shared
Rodriguez Echarri, A.
1 / 1 shared
Javier Garcia De Abajo, F.
1 / 2 shared
Abajo, F. Javier Garciá De
1 / 1 shared
Echarri, Álvaro Rodríguez
3 / 3 shared
Garciá De Abajo, F. Javier
1 / 1 shared
Rodríguez Echarri, Álvaro
1 / 1 shared
Wolff, Christian
2 / 8 shared
Bozhevolnyi, Sergey I.
2 / 35 shared
Boroviks, Sergejs
2 / 9 shared
Yezekyan, Torgom
1 / 1 shared
Vega, Sandra De
1 / 1 shared
Sols, Fernando
2 / 3 shared
De Abajo, F. Javier García
1 / 1 shared
De Vega, Sandra
1 / 3 shared
Echarri, A. Rodríguez
1 / 1 shared
Rodríguez Echarri, A.
1 / 1 shared
Javier García De Abajo, F.
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019

Co-Authors (by relevance)

  • Bowman, Alan R.
  • Abajo, F. Javier García De
  • Tagliabue, Giulia
  • Tsoulos, Ted V.
  • Iyikanat, Fadil
  • Sundararaman, Ravishankar
  • Echarri, Alvaro Rodríguez
  • Kiani, Fatemeh
  • Rodríguez Echarri, Alvaro
  • García De Abajo, F. Javier
  • Tserkezis, Christos
  • Eriksen, Mikkel Have
  • Mortensen, N. Asger
  • Jelver, Line
  • Echarri, A. Rodriguez
  • Tagliabue, G.
  • Abajo, F. Javier Garcia De
  • Tsoulos, T. V.
  • Bowman, A. R.
  • Kiani, F.
  • Rodriguez Echarri, A.
  • Javier Garcia De Abajo, F.
  • Abajo, F. Javier Garciá De
  • Echarri, Álvaro Rodríguez
  • Garciá De Abajo, F. Javier
  • Rodríguez Echarri, Álvaro
  • Wolff, Christian
  • Bozhevolnyi, Sergey I.
  • Boroviks, Sergejs
  • Yezekyan, Torgom
  • Vega, Sandra De
  • Sols, Fernando
  • De Abajo, F. Javier García
  • De Vega, Sandra
  • Echarri, A. Rodríguez
  • Rodríguez Echarri, A.
  • Javier García De Abajo, F.
OrganizationsLocationPeople

article

Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems

  • Abajo, F. Javier García De
  • Vega, Sandra De
  • Cox, Joel D.
  • Sols, Fernando
Abstract

The observation of high-order harmonic generation (HHG) from bulk crystals is stimulating substantial efforts to understand the involved mechanisms and their analog to the intuitive three-step recollision model of gas-phase HHG. Here we explore the roles of electronic band structure and Coulomb interactions in solid-state HHG by studying the optical response of linear atomic chains and carbon nanotubes to intense ultrashort pulses. Specifically, we simulate electron dynamics by solving the single-particle density matrix equation of motion in the presence of intense ultrafast optical fields, incorporating tight-binding electronic states and a self-consistent electron-electron interaction. At this level of description, linear atomic chains constitute an idealized yet realistic one dimensional (1D) system in which to explore HHG that can advantageously be tuned to describe metals, regular insulators, and topological insulators. Our chain model readily provides insight on the temporal evolution of electronic states in reciprocal space, revealing the important role played by electron interactions in HHG, due in part to the presence of collective optical resonances. This model further predicts that doped semiconductors generate high harmonics more efficiently than their metallic and undoped counterparts. To complement this idealized system we also show results for HHG in more realistic quasi-1D structures such as carbon nanotubes, the behavior of which is found to be in good qualitative agreement with the atomic chains. Our findings apply directly to extreme nonlinear optical phenomena in atoms on surfaces, carbon-based structures, linear arrays of dopant atoms in semiconductors, and linear molecules, such as polycyclic aromatic hydrocarbon chains, and can be straightforwardly extended to optimize existing platforms for HHG or identify new solid-state alternatives in the context of nonlinear plasmonics.

Topics
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • phase
  • nanotube
  • semiconductor
  • band structure