People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jansen, Thies
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Imaging the suppression of ferromagnetism in LaMnO3 by metallic overlayers
Abstract
<p>LaMnO3 (LMO) thin films epitaxially grown on SrTiO3 (STO) usually exhibit ferromagnetism above a critical layer thickness. We report the use of scanning SQUID microscopy (SSM) to study the suppression of the ferromagnetism in STO/LMO/metal structures. By partially covering the LMO surface with a metallic layer, both covered and uncovered LMO regions can be studied simultaneously. While Au does not significantly influence the ferromagnetic order of the underlying LMO film, a thin Ti layer induces a strong suppression of the ferromagnetism, over tens of nanometers, which increases with time on a timescale of days. Detailed electron energy loss spectroscopy analysis of the Ti-LaMnO3 interface reveals the presence of Mn2+ and an evolution of the Ti valence state from Ti0 to Ti4+ over approximately 5 nm. Furthermore, we demonstrate that by patterning Ti/Au overlayers, we can locally suppress the ferromagnetism and define ferromagnetic structures down to sub-micrometer scales.</p>