People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bobnar, Vid
Jožef Stefan Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Thermally Stable Capacitive Energy-Density and Colossal Electrocaloric and Pyroelectric Effects of Sm-Doped Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 Thin Filmscitations
- 2023Synergetic boost of functional properties near critical end points in antiferroelectric systemscitations
- 2023Non-stoichiometry and its implications for the properties of PMN–PT thin filmscitations
- 2022The effect of PVP on thermal, mechanical, and dielectric properties in PVDF-HFP/PVP thin filmcitations
- 2022Large imprint in epitaxial 0.67Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> thin films for piezoelectric energy harvesting applicationscitations
- 2022The Effect of PVP on Thermal, Mechanical, and Dielectric Properties in PVDF-HFP/PVP Thin Filmcitations
- 2021High dielectric thin films based on UV-reduced graphene oxide and TEMPO-oxidized cellulose nanofibrescitations
- 2018Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electrochemical storage applicationscitations
- 2017Strontium-doping effects in solution derived lead-free ferroelectric K(0.5)Na(0.5)NbO3 thin films
- 2016Microstructure and functional properties of Sr-doped K0.5Na0.5NbO3 thin films
Places of action
Organizations | Location | People |
---|
article
Synergetic boost of functional properties near critical end points in antiferroelectric systems
Abstract
The increase of the dielectric permittivity with an electric field and enhanced energy storage properties make antiferroelectrics very attractive for high-power electronic applications needed in emerging green energy technologies and neuromorphic computing platforms. Their exceptional functional properties are closely related to the electric field-induced antiferroelectric↔ferroelectric phase transition, which can be driven toward a critical end point by manipulation with an external electric field. The critical fluctuation of physical properties at the critical end point in ferroelectrics is a promising approach to improve their functional properties. Here, we demonstrate the existence of two critical end points in antiferroelectric ceramics with a ferroelectric-antiferroelectric-paraelectric phase sequence, using the model system Pb 0.99 Nb 0.02 [ ( Zr 0.57 Sn 0.43 ) 0.92 Ti 0.08 ] 0.98 O 3 . The critical fluctuation of the dielectric permittivity in the proximity of the antiferroelectric-to-paraelectric critical end point is responsible for the strong enhancement of the dielectric tunability (by a factor of > 2 ) measured at ≈ 395 K. The enhancement of the energy storage density at ≈ 370 K is related to the proximity of the ferroelectric-to-antiferroelectric critical end point. These findings open possibilities for material design and pave the way for the next generation of high-energy storage materials.