People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mkhoyan, K. Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Optical Properties of Electrochemically Gated La 1− xSr xCoO 3−δ as a Topotactic Phase-Change Materialcitations
- 2023Anomalous strain relaxation and its impact on the valence-driven spin-state/metal-insulator transition in epitaxial (Pr1−yYy)1−xCaxCoO3−δcitations
- 2023Spin Hall conductivity in Bi$_{1-x}$Sb$_x$ as an experimental test of bulk-boundary correspondence
- 2021Spin and Charge Interconversion in Dirac-Semimetal Thin Filmscitations
- 2020Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black Ascitations
- 2020Ambipolar transport in van der Waals black arsenic field effect transistorscitations
- 2020Plasmonic nanocomposites of zinc oxide and titanium nitridecitations
- 2020Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformationscitations
- 2020Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasmacitations
- 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) filmscitations
- 2015Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3citations
- 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinementcitations
- 2015Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3citations
- 2012Sputter deposition of semicrystalline tin dioxide filmscitations
- 2012Improving the damp-heat stability of copper indium gallium diselenide solar cells with a semicrystalline tin dioxide overlayercitations
- 2010Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growthcitations
- 2010Effect of hydrogen on catalyst nanoparticles in carbon nanotube growthcitations
Places of action
Organizations | Location | People |
---|
article
Anomalous strain relaxation and its impact on the valence-driven spin-state/metal-insulator transition in epitaxial (Pr1−yYy)1−xCaxCoO3−δ
Abstract
<p>Pr-based cobaltites exhibit extraordinary phenomena where abrupt valence shifts trigger coupled structural/spin-state/metal-insulator transitions. Recent work achieved strain control of these phenomena in thin films, with epitaxial compression even stabilizing room-temperature transitions. Here, we study the thickness dependence of these effects in the model system compressively strained YAlO3(101)/(Pr0.85Y0.15)0.7Ca0.3CoO3-δ(001). Transport data reveal highly unusual behavior where thicker films exhibit two transitions: one at the fully strained temperature (∼245K) and one near the bulk (∼135K). High-resolution x-ray diffraction confirms that this is due to anomalous strain relaxation where, immediately above the critical thickness (∼30nm), a film region with a near-bulk lattice parameter coexists with a fully strained region. Scanning transmission electron microscopy then reveals striking images where periodic arrays of dislocations occur in the film interior, rather than at the film-substrate interface, seeding accompanying lateral modulations in chemical doping. The unusual transport is thus a direct consequence of anomalous strain relaxation, which we discuss in detail. Intriguing behavior also arises in the ultrathin limit, where temperature-dependent transport and x-ray data reveal gradual suppression of the amplitude of the structural/metal-insulator transition but with no change in transition temperature, which we ascribe to effects of disorder in the presence of symmetry matching between the film and substrate. These results establish an unusual strain relaxation mechanism in perovskite oxide films (likely relevant to other systems) and further elucidate the sensitive strain response of these fascinating and potentially useful valence/structural/spin-state/metal-insulator transitions.</p>