Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Guo-Xu

  • Google
  • 3
  • 7
  • 210

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Compositional engineering of perovskites with machine learning12citations
  • 2022Compositional engineering of perovskites with machine learning12citations
  • 2018Performance of various density-functional approximations for cohesive properties of 64 bulk solids186citations

Places of action

Chart of shared publication
Todorovic, Milica
2 / 2 shared
Rinke, Patrick
2 / 8 shared
Laakso, Jarno
2 / 3 shared
Li, Jingrui
1 / 2 shared
Scheffler, Matthias
1 / 24 shared
Tkatchenko, Alexandre
1 / 7 shared
Reilly, Anthony
1 / 1 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Todorovic, Milica
  • Rinke, Patrick
  • Laakso, Jarno
  • Li, Jingrui
  • Scheffler, Matthias
  • Tkatchenko, Alexandre
  • Reilly, Anthony
OrganizationsLocationPeople

article

Compositional engineering of perovskites with machine learning

  • Todorovic, Milica
  • Zhang, Guo-Xu
  • Rinke, Patrick
  • Laakso, Jarno
Abstract

Perovskites are promising materials candidates for optoelectronics, but their commercialization is hindered by toxicity and materials instability. While compositional engineering can mitigate these problems by tuning perovskite properties, the enormous complexity of the perovskite materials space aggravates the search for an optimal optoelectronic material. We conducted compositional space exploration through Monte Carlo (MC) convex hull sampling, which we made tractable with machine learning (ML). The ML model learns from density functional theory calculations of perovskite atomic structures, and can be used for quick predictions of energies, atomic forces, and stresses. We employed it in structural relaxations combined with MC sampling to gain access to low-energy structures and compute the convex hull for CsPb(Br1−xClx)3. The trained ML model achieves an energy prediction accuracy of 0.1 meV per atom. The resulting convex hull exhibits two stable mixing concentrations at 1/6 and 1/3 Cl contents. Our data-driven approach offers a pathway towards studies of more complex perovskites and other alloy materials with quantum mechanical accuracy.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • theory
  • density functional theory
  • toxicity
  • machine learning