Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bailey, Nicholas P.

  • Google
  • 6
  • 6
  • 13

Roskilde University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Estimating melting curves for Cu and Al from simulations at a single state point1citations
  • 2023Isomorphs in sheared binary Lennard-Jones glass:Transient response2citations
  • 2023Isomorphs in sheared binary Lennard-Jones glass2citations
  • 2022Isomorph invariant dynamic mechanical analysis2citations
  • 2022Isomorph invariant dynamic mechanical analysis:A molecular dynamics study2citations
  • 2021Effectively one-dimensional phase diagram of CuZr liquids and glasses4citations

Places of action

Chart of shared publication
Friedeheim, Laura
2 / 2 shared
Dyre, Jeppe C.
2 / 22 shared
Hummel, Felix
1 / 1 shared
Weeks, Eric R.
2 / 2 shared
Jiang, Yonglun
2 / 2 shared
Moch, Kevin
2 / 3 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Friedeheim, Laura
  • Dyre, Jeppe C.
  • Hummel, Felix
  • Weeks, Eric R.
  • Jiang, Yonglun
  • Moch, Kevin
OrganizationsLocationPeople

article

Isomorph invariant dynamic mechanical analysis

  • Moch, Kevin
  • Bailey, Nicholas P.
Abstract

<p>We simulate dynamic mechanical analysis experiments for the Kob-Andersen binary Lennard-Jones system. For this, the SLLOD algorithm with time-dependent strain rates is applied to give a sinusoidally varying strain at different densities and temperatures. The starting point is a temperature scan at a fixed reference density. Isomorph theory predicts that for other densities, corresponding temperatures can be identified at which the mechanical properties are unchanged when scaled appropriately. We determine the isomorphically equivalent temperatures by analyzing how particle forces change upon scaling configurations to the new density. Loss moduli expressed in suitable reduced units are compared for isomorphic state points. When plotted against the unscaled temperatures, these reduced loss curves are observed to collapse indicating the validity of isomorph theory for dynamic mechanical analysis experiments. Two different methods to determine isomorphic temperatures are considered. While one of them breaks down for the largest density rescalings considered in this paper, the other one is still applicable in this region. The decorrelation of force vectors upon rescaling is investigated as a possible origin of this effect. Our results demonstrate that the simplification of the phase diagram entailed by isomorph theory for a wide class of systems is relevant also for the mechanical properties of glasses.</p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • experiment
  • glass
  • glass
  • phase diagram
  • dynamic mechanical analysis