Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dzhigaev, Dmitry

  • Google
  • 10
  • 57
  • 139

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Spatially resolved structural and chemical properties of the white layer in machined Inconel 718 super alloy1citations
  • 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rays2citations
  • 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskite5citations
  • 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy11citations
  • 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy11citations
  • 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffraction31citations
  • 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffraction31citations
  • 2019Coherent X-ray Imaging of CO-Adsorption-Induced Structural Changes in Pt Nanoparticles: Implications for Catalysis29citations
  • 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowires9citations
  • 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowires9citations

Places of action

Chart of shared publication
Björling, A.
1 / 3 shared
Zhe, R.
1 / 2 shared
Wallentin, J.
1 / 4 shared
Lazar, Isac
1 / 7 shared
Rysov, R.
1 / 3 shared
Bushlya, V.
1 / 13 shared
Dierks, H.
1 / 2 shared
Sprung, M.
1 / 9 shared
Marçal, L. A. B.
1 / 2 shared
Msaoubi, R.
1 / 18 shared
Lenrick, Filip
1 / 37 shared
Mikkelsen, A.
1 / 12 shared
Hammarberg, Susanna
5 / 6 shared
Björling, Alexander
5 / 11 shared
Wallentin, Jesper
6 / 22 shared
Mikkelsen, Anders
8 / 44 shared
Lamers, Nils
1 / 4 shared
Zhang, Zhaojun
4 / 11 shared
Chen, Huaiyu
1 / 5 shared
Gonzalez, Miguel Angel Gomez
1 / 1 shared
Parker, Julia
1 / 1 shared
Zatterin, Edoardo
1 / 7 shared
Schülli, Tobias U.
1 / 6 shared
Marçal, Lucas A. B.
5 / 6 shared
Sanders, Ella
3 / 4 shared
Bellec, Ewen
1 / 2 shared
Rothman, Amnon
5 / 11 shared
Oksenberg, Eitan
4 / 15 shared
Timm, Rainer
2 / 28 shared
Benter, Sandra
2 / 7 shared
Irish, Austin
2 / 6 shared
Sala, Simone
2 / 2 shared
Unger, Eva
4 / 26 shared
Joselevich, Ernesto
2 / 8 shared
Runge, Henning
1 / 1 shared
Richard, Marie-Ingrid
1 / 15 shared
Gelisio, Luca
1 / 1 shared
Vonk, Vedran
1 / 14 shared
Stierle, Andreas
1 / 28 shared
Zhou, Tao
1 / 9 shared
Lazarev, Sergey
1 / 4 shared
Kim, Young Yong
1 / 3 shared
Seitz, Christoph
1 / 1 shared
Keller, Thomas F.
1 / 24 shared
Kulkarni, Satishkumar
1 / 7 shared
Abuin, Manuel
1 / 2 shared
Vartanyants, Ivan A.
2 / 6 shared
Maier, Simon
1 / 1 shared
Shabalin, Anatoly
2 / 3 shared
Bi, Zhaoxia
2 / 4 shared
Samuelson, Lars
2 / 42 shared
Rose, Max
2 / 2 shared
Falkenberg, Gerald
2 / 8 shared
Vartaniants, Ivan
1 / 4 shared
Feidenhansl, Robert
2 / 8 shared
Reinhardt, Juliane
2 / 4 shared
Stankevic, Tomas
2 / 6 shared
Chart of publication period
2024
2022
2021
2020
2019
2015

Co-Authors (by relevance)

  • Björling, A.
  • Zhe, R.
  • Wallentin, J.
  • Lazar, Isac
  • Rysov, R.
  • Bushlya, V.
  • Dierks, H.
  • Sprung, M.
  • Marçal, L. A. B.
  • Msaoubi, R.
  • Lenrick, Filip
  • Mikkelsen, A.
  • Hammarberg, Susanna
  • Björling, Alexander
  • Wallentin, Jesper
  • Mikkelsen, Anders
  • Lamers, Nils
  • Zhang, Zhaojun
  • Chen, Huaiyu
  • Gonzalez, Miguel Angel Gomez
  • Parker, Julia
  • Zatterin, Edoardo
  • Schülli, Tobias U.
  • Marçal, Lucas A. B.
  • Sanders, Ella
  • Bellec, Ewen
  • Rothman, Amnon
  • Oksenberg, Eitan
  • Timm, Rainer
  • Benter, Sandra
  • Irish, Austin
  • Sala, Simone
  • Unger, Eva
  • Joselevich, Ernesto
  • Runge, Henning
  • Richard, Marie-Ingrid
  • Gelisio, Luca
  • Vonk, Vedran
  • Stierle, Andreas
  • Zhou, Tao
  • Lazarev, Sergey
  • Kim, Young Yong
  • Seitz, Christoph
  • Keller, Thomas F.
  • Kulkarni, Satishkumar
  • Abuin, Manuel
  • Vartanyants, Ivan A.
  • Maier, Simon
  • Shabalin, Anatoly
  • Bi, Zhaoxia
  • Samuelson, Lars
  • Rose, Max
  • Falkenberg, Gerald
  • Vartaniants, Ivan
  • Feidenhansl, Robert
  • Reinhardt, Juliane
  • Stankevic, Tomas
OrganizationsLocationPeople

article

In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskite

  • Wallentin, Jesper
  • Zatterin, Edoardo
  • Schülli, Tobias U.
  • Marçal, Lucas A. B.
  • Mikkelsen, Anders
  • Sanders, Ella
  • Bellec, Ewen
  • Dzhigaev, Dmitry
  • Zhang, Zhaojun
  • Rothman, Amnon
Abstract

Metal halide perovskites exhibit a rich crystal structure, with multiple phases as well as ferroelastic domains, which is crucial for the optical and electrical properties. The average crystal phase-transition temperatures can be shifted by size, strain, or defects, but it is not clear whether such differences can also appear locally within a single crystal. The experimental study of domain dynamics within nanocrystals is challenging and requires a method capable of probing crystal lattice variations with both high spatial and temporal resolution. Here, we show that in situ full-field diffraction x-ray microscopy can be used to image domains in a single crystal CsPbBr3 nanoplatelet as the temperature traverses the orthorhombic to tetragonal phase transition, at 150 nm spatial resolution and 6 s time resolution. The images reveal sudden domain pattern changes faster than the temporal resolution. Surprisingly, we observe substantial local variations during heating, with domain changes occurring at different temperatures within the single crystal. The nanoplatelet exhibits a high-temperature domain pattern completely different from the low-temperature one, but both patterns are reproducible, and we reversibly switch between them in multiple cycles. These results demonstrate that single CsPbBr3 crystals can exhibit substantial local variation of their basic crystal properties.

Topics
  • perovskite
  • impedance spectroscopy
  • single crystal
  • phase
  • phase transition
  • defect
  • microscopy
  • crystalline lattice