People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dzhigaev, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Spatially resolved structural and chemical properties of the white layer in machined Inconel 718 super alloycitations
- 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rayscitations
- 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskitecitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffractioncitations
- 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffractioncitations
- 2019Coherent X-ray Imaging of CO-Adsorption-Induced Structural Changes in Pt Nanoparticles: Implications for Catalysiscitations
- 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowirescitations
- 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowirescitations
Places of action
Organizations | Location | People |
---|
article
In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskite
Abstract
Metal halide perovskites exhibit a rich crystal structure, with multiple phases as well as ferroelastic domains, which is crucial for the optical and electrical properties. The average crystal phase-transition temperatures can be shifted by size, strain, or defects, but it is not clear whether such differences can also appear locally within a single crystal. The experimental study of domain dynamics within nanocrystals is challenging and requires a method capable of probing crystal lattice variations with both high spatial and temporal resolution. Here, we show that in situ full-field diffraction x-ray microscopy can be used to image domains in a single crystal CsPbBr3 nanoplatelet as the temperature traverses the orthorhombic to tetragonal phase transition, at 150 nm spatial resolution and 6 s time resolution. The images reveal sudden domain pattern changes faster than the temporal resolution. Surprisingly, we observe substantial local variations during heating, with domain changes occurring at different temperatures within the single crystal. The nanoplatelet exhibits a high-temperature domain pattern completely different from the low-temperature one, but both patterns are reproducible, and we reversibly switch between them in multiple cycles. These results demonstrate that single CsPbBr3 crystals can exhibit substantial local variation of their basic crystal properties.